

Integrated Energy Resources

The Application and Costs of Lighting Controls

Efficiency Vermont Better Buildings by Design Conference February 6, 2014

Acknowledgements

Thanks to Green Light New York for funding the development of this course material

www.greenlightny.org

Thanks to the following organizations and companies for contributing material

Three Different "Levels" of Control Systems

Three Different "Levels" of Control Systems

How do these levels correlate to:

- Costs?
- Savings?
- Complexity?
- Functionality?
- Occupant Satisfaction?
- Marketability / Rents?

Stand-Alone Controls

Line Voltage Wall Switch

Line Voltage Occupancy/Vacancy Sensor

Two Zone or "Bi-Level" Occupancy/Vacancy Sensor

Stand-Alone Photocell w/ Relay/Power Pack

Stand-Alone Occupancy Sensor w/ Relay/Power Pack

Stand-Alone Controls Pros/Cons

Pros:

- May be less expensive
- Familiar wiring methods

<u>Cons:</u>

- Less Flexible
- Complicated to combine multiple control strategies
- Less energy savings

Centralized Panel Controls

Optimal UKEEN LUI

Pros:

- More flexible
- Programming & monitoring from a centralized location

Centralized Panel Controls Pros/Cons

 Can be integrated into BAS systems (security, HVAC)

<u>Cons:</u>

- Requires low-voltage wiring to be installed
- Less familiar wiring methods may result in higher bid costs
- Limitations on zoning & no. of control strategies

Fully-Integrated Addressable Control System (Wired)

Addressable systems can require up to 60% less wiring

Fully-Integrated Addressable Control System (Wireless)

PrFully-Integrated Addressable Const May have higher

- More flexibility > potential for more energy savings
- Programming and monitoring from a centralized location
- Allows for multiple control strategies
- Can be easily reconfigured, re-zoned, for changes in space layout and tenants without requiring rewiring
 Optimal GREENLIGHT NEW YORK

- Proprietary products trademarked DALI
- May require lowvoltage wiring to be

initial cost

- installed (wired)
- Less familiar wiring methods may result in higher bid costs
- May require a computer server
- Commissioning can be more complicated and

Applying different "levels" of controls to an example Office Space

Review of Code Lighting Control Requirements per IECC 2009

Automatic Lighting Shutoff

- "Buildings... shall be equipped with automatic control device to shut off lighting... based on either:"
 - Scheduled basis using time of day
 - Occupant Sensor
 - Signal from control or alarm system that indicates area is unoccupied
- Daylight Zone Control
 - Daylight zones shall be provided with individual controls that control the lights independent of general area lighting

2-Lamp T5 Troffers on &'xl0' spacing

Four Private Offices

One Open Office

Vertical Glazing on East & North

First Approach Use Stand-alone Controls to Meet the Code Minimum

<u>Open Office Control</u> <u>Strategies</u>

 Timeclock scheduling (all zones)

<u>Open Office Control</u> <u>Strategies</u>

- Timeclock scheduling (all zones)
- Manual switch for daylight zone luminaires

<u>Open Office Control</u> <u>Strategies</u>

- Timeclock scheduling (all zones)
- Manual switch for daylight zone luminaires

<u>Private Office</u> <u>Control Strategies</u>

 Line Voltage Vacancy Sensors
 Optimal GREENLIGHT

Savings Analysis using Stand-Alone Controls

Space	Control Strategy	Controlle d Fixture(s	Total Project % Savings
) / Savings	
Øpen	Timeclock Scheduling Control	15%	14%
Øpen	Daylight Zone Luminaires Switch	0%	0%
Private	Vacancy Sensors	30%	5%

Total Cumulative Lighting Control Savings: 16% What are the Pros & Cons of this approach?

- Functionality
- Cost
- Wiring
- Energy Savings
- Flexibility
- Occupant Satisfaction
- Marketability & Rents

Second Approach Centralized Relay Panel with Additional Control Strategies

Centralized Panel Controls

Optimal UKEEN LUI

<u>Open Office Control</u> <u>Strategies:</u>

 Timeclock scheduling by day

<u>Open Office Control</u> Strategies:

- Timeclock scheduling by day
- Occupancy control at night

LP Low-

Panel

<u>Open Office Control</u> <u>Strategies:</u>

- Timeclock scheduling by day
- Occupancy control at night
- Daylight responsive dimming for daylight zone luminaires (2 zones)

<u>Open Office Control</u> <u>Strategies:</u>

- Timeclock scheduling by day
- Occupancy control at night
- Daylight responsive dimming for daylight zone luminaires (2 zones)

<u>Private Office Control</u> <u>Strategies:</u>

Vacancy Sensors with Di-Optimaswitching

Centralized Panel w Additional Control Strategies Savings Analysis

Space	Control Strategy	Controlled Fixture(s) % Savings	Total Project % Savings
0pen	Timeclock by Dayı Occupancy Control at night	57%	19%
0pen	Daylight Responsive Dimming for Daylight Zone Luminaires	23%	8%
Private	Vacancy Sensors	30%	5%
Private	Bi-Level Switching	۶%	7%
Optimal GREEN LIGHT NEW YORK		Total Cumulative Lighting Control Savings: 30%	

What are the Pros & Cons of this approach?

- Functionality
- Cost
- Wiring
- Energy Savings
- Flexibility
- Occupant Satisfaction
- Marketability & Rents

Third Approach Fully Addressable -Wireless with all Cost-effective Control Strategies

Wireless

 Timeclock scheduling by day

System Controller & Software

- Timeclock scheduling by day
- Occupancy control at night

Wireless ≬verride Switches

- Timeclock scheduling by day
- Occupancy control at night
- Daylight responsive dimming for daylight zone luminaires

- Timeclock scheduling by day
- Occupancy control at night
- Daylight responsive dimming for daylight zone luminaires
- Task Tuning

System Controller & Software

Wireless

0verride

Switches

Zone 2

Zone l

Wireless ◊ccupancy Sensor and Photocell Private Office Å <u>Control Strategies:</u> Wireless Vacancy sensors Area Controller Wireless Photocell CAT P 5 System Wireless Controller 0ccupancy & Software Sensor Daylig Daylig Wireless ht ht 0verride

Switches

G Y

Fully Addressable Wireless w all Cost-					
Effectiv Space	Ve Control Strategies Control Strategy	Savings A Controlled Fixture(s) % Savings	nalysis Total Project % Savings		
0pen Office	High-end trim dimming	10%	ዓ%		
0pen 0ffice	Timeclock Scheduling Control during day Occupancy Control at night	19%	17%		
0pen 0ffice	Daylight Responsive Dimming for first two rows of luminaires near glazing	8%	7%		
Private Office	High-end trim dimming	10%	1%		
Private Office	Vacancy Sensors	27%	2%		
PrizeOpt	Perspect dinning	^{10%} Total C Lightin	dímulative Ig Control		

What are the Pros & Cons of this approach?

- Functionality
- Cost
- Wiring
- Energy Savings
- Flexibility
- Occupant Satisfaction^{& Software}
- Marketability & Rents

Should more advanced controls cost more?

Clanton Lighting Control Study

- Life Cycle Cost Evaluation of Multiple Lighting Control Strategies
- Compares different levels of lighting control upgrades in Boston & Los Angeles
- Do or should Advanced Lighting Controls cost more?
- Do Advanced Lighting Controls save more?

Optimal GREEN LIGHT

Networked Addressable

(L) Wireless Full Dimming

(5) Wireless Partial
Dimming

(4) Addressable
Ballasts

<u>Central Panel</u>

- (3) Dimming Panel
- (2) Relay Panel

<u>Stand-Alone</u>

(1) Localized control

Analyzed L different levels of Lighting Control Upgrades

Baseline Building

Figure 11 – Capital Cost Breakdown for Boston

lO-year Costs

140%

Key Findings of Clanton Study

- Advanced Lighting Controls can achieve 50% less energy than code-compliant lighting controls
- Wireless Advanced Lighting Controls have lower capital costs than other systems studied in office retrofit applications
- Reduced labor & energy costs of advanced networked lighting control systems can out-weigh increased equipment & commissioning costs

Will this be true on your project?

Challenges With Pricing

Does uncertainty or lack of familiarity increase bid price?

> Will the wiring savings be realized?

What can we do to address these challenges?

Strategies to Reduce the Cost of Advanced Controls

Hold mandatory pre-bid training for all bidders

- Highlight issue of controls pricing
- Communicate that you are looking to realize savings from reduced wiring
- Controls pricing should not be based on standard \$/SF
- Clearly explain how controls will be wired
- Clearly identify who is responsible for what

Strategies to Reduce the Cost of Advanced Controls

Carefully and Fully Specify Controls

- Provide Design Narrative for all Controls
- Provide Control Intent and Zoning Diagrams
- Specify Initial Calibration Settings
- Identify who is responsible for what
- Align responsibility with who is most knowledgeable and/or costeffective for each task
 - Example: Consider putting responsibility on Manufacturer for Commissioning and System Functionality
 - Example: Require the contractor is trained on control system

Strategies to Keep Advanced Controls on Projects

Reduce the Costs per previous slides

Play up the benefits beyond energy savings:

Reasons People Control Their Lights

Allowing workers to control their light can result in higher productivity and occupant satisfaction

People costs typically
 outweigh building
 costs by L3:L

Investing in personal controls can lead to desirable financial

Green Buildings and Property Value / Rents / Lease Rates

Certification on Office Values Fuerst et al 5077 * 4-5% Rental Premium 25% Sales Premium for LEED or ENERGY STAR Buildings Sustainability and the Dynamics of Green Building, Eichholtz et al, 2010 * 6% Rental Premium 11-13% Sales Premium for LEED or ENERGY STAR Buildings Green Design and the Market for Commercial Office Space Wiley et al, 2010 * 7-17% Rental Premium 8-18% Sales Premium l0-ll% higher Occupancy Ratos for ENERGY STA

Integrated Energy Resources

Thank You

Gabe Arnold, PE, LC

Optimal Energy, Inc. 10600 Route 116, Suite 3 Hinesburg, VT 05461

802-482-5600