

ZNE or Bust, Warts and All Zero Net Energy Schools (almost)

James R Benya PE FIES FIALD BENYA BURNETT CONSULTANCY

Architects TRILOGY ARCHITECTURE, REDDING, CA

FANNING HOWEY, INDIANAPOLIS EMC2 GROUP ARCITECTS, PHOENIX

- What is a Zero Net Energy building (ZNE/NZE) and a near-ZEN building?
- What are the relationships between ZNE/NZE buildings and occupancy type and density, and renewable source cost and capacity?
- Can ZNE schools be appealing at the cost of everyday buildings?
- A few lessons learned from two+ schools.

This program is an extended version of a program registered with the AIA/ASHRAE for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

• NET ZERO by 2030

Project	Area	People	Pop. Density	kBTU/sf/yr
Base Case (code)				39-58
Putney Field House	17,000	Varies	Varies	10
Leopold Center	12,000	12	1000 sf/p	12
RSA	77,000	~500	150 sf/p	14
Richardson Elementary	81,000	550	150 sf/p	18
Lady Bird Johnson	150,000	~1000	150 sf/p	19
Fort Huachuca M.S.	96,000	~600	150 sf/p	20
HOK/Weidt Office Prototype**	150,000	~500	300 sf/p	22
iDeAs	7,000	15	470 sf/p	22
31 Tannery	42,000	~150	300 sf/p	24
NREL Golden	222,000	~750	300 sf/p	35

** Theoretical

Near ZNE REDDING SCHOOL FOR THE ARTS TRILOGY ARCHITECTURE, REDDING, CA

RSA Energy Use

Annual Total 313,000 kWh/14 kBTU/sf/yr

Disaggregated

Aggregated

Load	kWh/yr	Load	kWh/yr	
Lighting		• HVAC	123,000	
• Main Level (9.9%)	31,000	Amphitheater	5 kBTU/sf/yr (38%)	
• Upper Level (5.6%)	17,500	Computers		
• Exterior (0.5%)	1,600	Projectors		
• Stairs & Exits (0.6%)	1,800	Video monitors		
• LED (<.1%)	100	AV systems		
Base Load		Night events		
• Transformer Loss (3.2%)	10,000	Cooking		
• Plug, IT, circulation pump	127,000			
and refrigeration (40.5%)		PV Output 197,000) kWh/9kBTU/sf/yr	
• Cart charging (1.6%)	5,000	Wind 5,000 kWh/.1kBTU/sf/yr		
TOTAL (62%)	194,000 9 kBTU/sf/yr	DIFFERENCE	~ 5kBTU/sf/yr	

NET ZERO by 2030

Reaching for ZNE

Challenge	Impact
Reduce lighting load by 1/3	1.0 kBTU/sf/yr
Reduce base load by 1/3	1.9 kBTU/sf/yr
Reduce aggregated load by 1/3	1.7 kBTU/sf/yr
Solar cart charger	0.3 kBTU/sf/yr

Obvious Opportunities

- Lights on by day
- Night lights
- Video screens in lobby
- Portable space heaters
- IR lamps for aquariums and terrariums
- Non-energy star refrigeration
- Heat pump set points
- Area IR heaters

RSA from the Southwest

RSA Entry

RSA Circulation Main Level

RSA Upper Level Circulation

Classroom Entry

Typical Classroom

Classroom View

Library

Classrooms/Amphitheater

Classrooms/Amphitheater

Successes

- Very low energy use
- Interior lighting average LPD <0.4 w/sf @ 2500 hrs/yr
- Exterior lighting <1600 kWh/yr
- Ground source heat pump system
- Shift of program space to partly conditioned or outdoor space

NET ZERO by 2030

Could Do Better

- Better metering and disaggregation
- Lighter colors in classrooms
- Classroom footprint more area close to daylight source
- Classroom AV always perpendicular to light
- LED theatrical lighting
- Higher SFR in stage/classrooms
- Complete summer shut down

NET ZERO by 2030

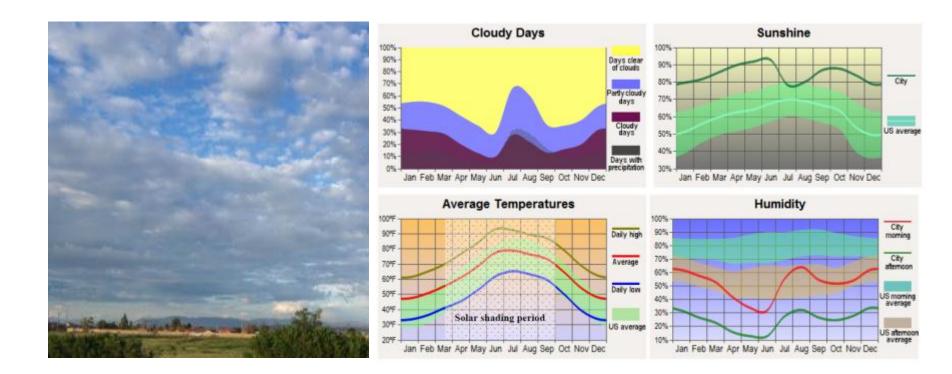
ZNE or Near ZNE?

ZNE

- Energy use 14 kBTU/sf/y
- PV output 306,000 kWH per year
- PV size about 180 pKW
- PV cost about \$1.1 million

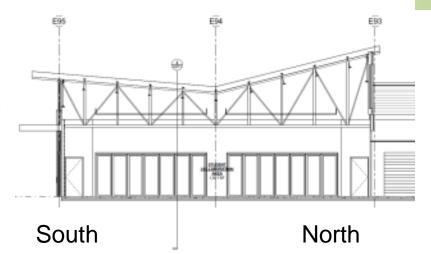
Near ZNE

- Energy use 14 kBTU/sf/yr
- PV output 197,000 kWh per year
- PV size about 120 pKW
- PV cost about \$0.6 million
- Save \$0.5 million
- Energy cost per year ~\$15,000 (120,000 kWh)
- Payback period >25 years from near ZNE to ZNE
- Maximum output when building is dormant

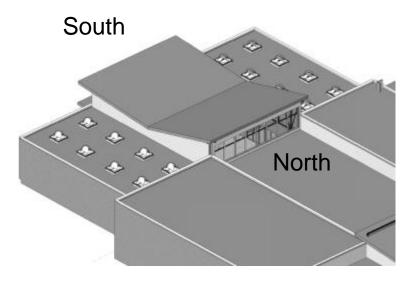


ZNE ready FORT HUACHUCA COLONEL SMITH MIDDLE SCHOOL

FANNING HOWEY AND EMC2, ARCHITECTS

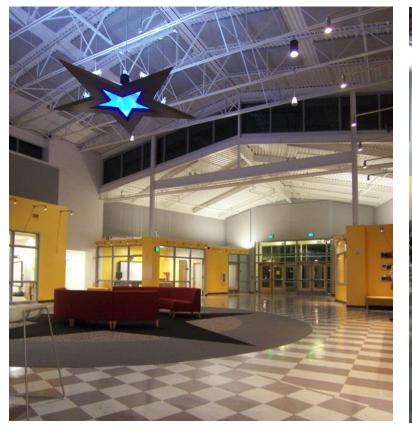


Climate and Site Studies



Schematic Design

Design Development



Entry North Facing (towards Cafetorium)

Entry South Facing Night and Day

Gymnasium

By night: 500 lux, 0.65 w/sf, 5 kwh/hr of lighting load, .65 w/sf of cooling load

By day: 200-1000 lux, 0.00 w/sf, 5 kwh/hr, .65 w/sf of cooling load from daylight

Classrooms

NET ZERO by 2030

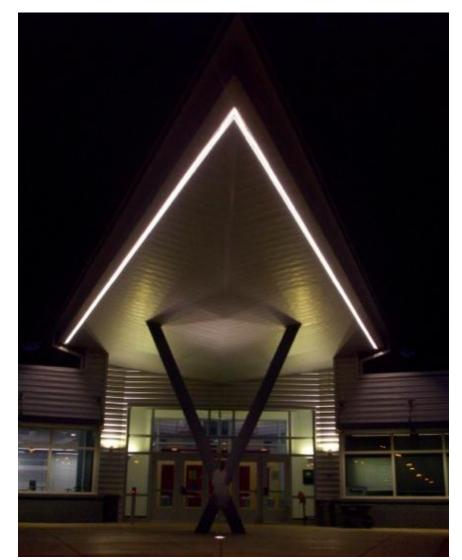
Classroom Pod

Day

- Cloudy day, 300-600 lux
- Sunny day 500-1000 lux
- Cooling load <.5 w/sf (summer)
- Passive heating > 1.5 w/sf (winter)

Night

- Light level 400-500 lux
- 0.65 w/sf lighting power
- 0.65 w/sf cooling load


• NET ZERO by 2030

Lessons Learned

- Nearly 100% daylight autonomy in regularly occupied spaces is possible
- Don't (over) daylight spaces with part time occupancy
- Daylight factor can be less in circulation and non task spaces
- Layered daylighting (skylights + clerestories + view windows) is a good formula
- Complex lighting controls not needed if the daylighting is really good

The Prow

Site Lighting

• NET ZERO by 2030

Lessons Learned

- LED outdoor lighting can be low power and easily dimmed in any climate
- Hybrid LED lighting (warm white/amber) for dark skies
- Turn lights off most of the night
- Motion sensors can illuminate a part of a site to ward off "visitors"

Questions?

James R Benya PE FIES FIALD jbenya@benyaburnett.com