MultiFamily Deeper Energy Retrofits Successes and Challenges

Scott Campbell
Vermont Fuel Efficiency Partnership

Craig Peltier

Vermont Housing & Conservation Board

Better Buildings by Design conference February 6, 2014

Improve sustainability of affordable multifamily housing

Make 30-year energy retrofit investments

"Deep energy retrofits"

Vermont Fuel Efficiency Partnership

Better Buildings by Design Feb. 6, 2014 /3

How far to go?

Performance Requirements Single-Family and Multi-Family Homes ~ Fast-Track Method							
Component	Package 1	Package 2	Package 3	Package 4			
1. Ceiling R-Value	R-49	R-38	R-38 or R-30+10	R-28 cont.			
2. Above-Grade Wall R-value	R-20 or R-13+5	R-20+5 or R-13+7.5	R-20 or R-13+5	R-21 cont.			
3. Floor R-value	R-30	R-30	R-30	R-30			
4. Basement/Crawl Space Wall R-value	R-15/20	R-15/20	R-20 cont.	R-15/20			
5. Slab Edge R-value	R-15, 4ft.	R-15, 4ft.	R-15, 4ft	R-15, 4 ft			
6. Heated Slab R-value (Edge and Under)	R-15	R-15	R-15	R-15			
7. Window and Door U-value	0.32	0.32	0.30	0.32			
8. Skylight U-value	0.55	0.55	0.55	0.55			

SECTION 4-R2: VERMONT MULTIFAMIL ENERGY DESIGN STANDARDS VHCB & VHFA Multifamily Energy Design Standards-March 2012, Ver. 1.0

					Advanced Mechanical ⁸						
	Units	Ceiling / Attic R ¹	Wall R ²	Window ³ R- value / U-Value	Foundation R- Value, Continuous	Slab Edge R	Air Sealing: MASP ⁵	Mechanical ⁶	Solar ⁷	Biomass ⁹	ASHP
Rehabilitation	All	60	25	R 3.3 / U.30	15	15	<3ACH 50	MMDP	Required 50% Load	Not Required	Not Required
New Construction	≥5	60	25	R 3.3 / U.30	15	15	<2ACH 50	MMDP	Required 50% Load	Not Required	Not Required
New Construction	≤4	60	25	R5/U.20⁴	15	15	<2 ACH50	MMDP	Required 50% Load	Not Required	Not Required
Tier II Level	All	60	30	R 5 / U.20	15	15	<1ACH 50	HRV required	75%+ of load	75%+ of load	COP >3

http://www.vhfa.org/documents/developers/gbs.pdf

Vermont Fuel Efficiency Partnership

Post-Retrofit Survey of Actual Usage

- Compare Actual Savings to Estimated
- What are Biggest Hits?
- What are Biggest Factors in Modeling?
- Refine Assumptions for Modeling & Estimating Savings

Vermont Fuel Efficiency Partnership

Attrition

	BUILDINGS	ANALYSIS TOOLS
ALL	184	128
Pre Sept 2012	164	117
Obtained Post- Data	90	69
Bad Data	(39)	(29)
Study Sample	51	40
Great Data	3	3
Good Data	31	19
OK Data	19	19
Still in Process	18	13

Vermont Fuel Efficiency Partnership

Better Buildings by Design Feb. 6, 2014 /7

Why Projects Drop from Study

- In Service by Sept 2012
- Holes in data, pre- or post-
- Vacancies
- Infrequent fills
- Not actually fills
- Multiple fuels not accounted for
- Switch from Electric pre-

Vermont Fuel Efficiency Partnership

Calculating Actual Savings

- Determine usage relative to temperature during pre- period
- Use that relationship to calculate what usage would have been, without retrofit, using postperiod temperature
- Subtract actual usage in post- period from calculated post without retrofit

Vermont Fuel Efficiency Partnership

Heat-Loss Modeling Tool

"Essentially, all models are wrong, but some are useful."

George E. P. Box (1919 – 2013) Statistician, Fellow of the Royal Society

Vermont Fuel Efficiency Partnership

Better Buildings by Design Feb. 6, 2014 /21

Factors affecting Modeling & Savings Estimates

A Useful Heat-Loss Modeling Tool

- Assists determination of best workscope
- Records bases for decisions
- Traps obvious errors
- Displays understandable results
- Offers reliable results when used with accurate data and consistent assumptions

Vermont Fuel Efficiency Partnership

Factors affecting Modeling & Savings Estimates

VFEP Heat-Loss Modeling Tool

- Q = U * A * ΔT
- Six sides of enclosure
- Blower-Door measurement
- · Internal heat gain from Electric plug load
- Adjust Modeled Usage to Historic usage data, discounted for AFUE & distribution efficiency
- Adjusted Model used to estimate savings from added R-value and CFM50 reduction

Vermont Fuel Efficiency Partnership

Better Buildings by Design Feb. 6, 2014 /23

Factors affecting Modeling & Savings Estimates

Factors Affecting Modeling

- Pre-Retro Usage History
- Space/DHW disagg
- CFM50 test number
- Divide-by Factor: Building Height, Sheltering
- Accounting for all Surface Areas
- In-service R-value of assemblies, pre- & post-
- · Ventilation: Actual CFM, and runtimes

Vermont Fuel Efficiency Partnership

Factors affecting Modeling & Savings Estimates

Squirrel Factors

- Bulk fuel: Infrequent deliveries; not fills
- Disaggregation between space & DHW
- AFUE and Distribution efficiency
- Missing Portable space heaters?
- Divide-by Factor: Converting CFM50 into BTUs
- Future savings based on past climate conditions

Vermont Fuel Efficiency Partnership

Better Buildings by Design Feb. 6, 2014 /25

Factors affecting Modeling & Savings Estimates

Squirrel Factors

- In-service R-value of assemblies, pre- & post-
- Post-Retrofit CFM50
- Tempering of Below-Grade Surfaces
- Ventilation: Actual CFM, and runtimes

Vermont Fuel Efficiency Partnership

Generally: Measures that work

- Solar DHW
- Infiltration reduction
- Foundation insulation
- Large buildings: Heating efficiency improvemt
- Large buildings: Careful with Ventilation!

Vermont Fuel Efficiency Partnership

Lessons Learned

- Start with detailed usage data; DHW meters?
- Do regular progress inspections
- · Include building commissioning
- Ventilation at currently required rates is significant load, especially in large buildings:
 Always consider HRV

Vermont Fuel Efficiency Partnership

Better Buildings by Design Feb. 6, 2014 /39

VFEP 2013 Fuel Study funded through

State of Vermont
Weatherization Assistance Program
Office of Economic Opportunity

EVT-HPF: Efficiency Vermont

- Heating & Process Fuels funds

Vermont Fuel Efficiency Partnership

Central Vermont Community Action Council

funded in 2009 - 2013 through:

Efficiency Vermont

Heating & Process Fuels funds

and.

Vermont Department of Public Service

utilizing funds from:

Regional Greenhouse Gas Initiative

Energy Efficiency & Conservation **Block Grant**

an American Recovery & Reinvestment Act program

Vermont Fuel Efficiency Partnership

Better Buildings by Design Feb. 6, 2014 /41

Scott Campbell

Vermont Fuel Efficiency Partnership scott.campbell@vfep.org 802 477-5177

Craig Peltier

Vermont Housing & Conservation Board craig@vhcb.org 802 828-1007

special thanks to Eriks Perkons, VFEP Lead Researcher

Vermont Fuel Efficiency Partnership