Active Energy Recovery Utilizing Near Frictionless Chillers draft 12-22-13

Clients throughout

North America

Presented at: Better Buildings by Design 2014 By: Turner Building Science & Design, LLC William A. Turner, MS, PE www.turnerbuildingscienc.com

& The Blake Group Jeffery J. Harrison, PE www.bghUSA.com

© Turner Building Science, 2014 All rights reserved

Who is here, what climate zones? What types of Industries?

© Turner Building Science, 2014 All rights reserved

Active Energy Recovery Utilizing <u>Near-Frictionless</u> <u>Chillers (NFC)</u> Mechanical, Commercial 3:14 to 4:45

Jeff Harrison, *PE, LEED AP, The Blake Group* **William Turner**, *MS, PE, Turner Building Science & Design, LLC*

Learn how near-frictionless compressors for chillers capture waste exhaust energy for reuse, reducing the need for fossil fuels.

We'll cover systems for K-12 schools, offices, and universities, from theory of operation to type and configuration of chiller equipment.

Participants will learn to recognize opportunities for application and the tools necessary for success.

Level: Advanced Room: Amphitheatre

Disclaimer

This is the best and most current general information of which we are aware. It is not intended to be used as legal or design advice. Individual projects require individual attention.

Comments and feedback are always welcome

© Turner Building Science, 2014 All rights reserved

Today's Objectives

- What is a <u>Near Frictionless</u> <u>Chiller (NFC</u>)
- Applications in Energy Recovery That Likely Make Economic Sense when using a <u>NFC</u>
- Components That Are Needed & How They Are Sized to optimize a <u>NFC</u>
- Engineering Needed & Operator Education

General Principle: HVAC Changes Are Often Costly:

Look For "Value Added" Opportunities & Funding Incentive Programs

Marginal Cost of doing it better with a NFC

Utility programs can often be used to "buy down" the cost of premium efficiency improvements to reduce KWH

Marginal Cost It needs replacing or repairing, if we are going to renovate, "now" is the time to consider:

•HVAC Systems More Efficient Boilers More Efficient Chillers Smarter Controls Energy Recovery •Other Energy Sources •Wood Fuels •Geo-Exchange •Waste Energy Recovery •Thermal Solar •Others?

General Principle: Look For "Value Added" Opportunities & Incentives

Once The Significant Deficiencies of the HVAC System Have Been Identified:

Upgrades Are Most Cost Effectively Made When A Component or Components Are In Need Of Replacement so you only have to justify the "added cost" compared to a "replacement in-kind"

What type of energy do you need?

Hot Water? Steam? Chilled Water?

What fuels do you have available?

Fuel Oil? Propane? Natural Gas? Electric?

What is a Near Frictionless Chiller (NFC)

The Vapor Compression Cycle

Moves heat from the evaporator to the condenser, while also changing its state of energy from a lower level (40°F to 55°F) to a higher level (80°F to 95°F)

Copyright TBS & BHGUSA 2014

Compressor Machine Basics

• Working Fluid: Uses a working fluid with a mechanically produced and reversible phase change to move energy from one location to another.

•Electrical Energy: Uses electrical energy to drive a compressor to change a vapor back to a liquid.

•Proven: "refrigeration" Technology

- very reliable
- widely used,
- since 1930's (80 years)

The shaft of the compressor floats in the air on a magnetic field bearing, uses no oil, operates over 30,000 RPM

The Danfoss Turbocor <u>N</u>ear <u>F</u>rictionless <u>C</u>ompressor

Near Frictionless Compressor Near Frictionless Chiller

OEM companies using the Danfoss Near Frictionless Compressor

Copyright TBS & BHGUSA 2014

Near Frictionless Chiller

There are four basic types of mechanical compression chillers.

Common Chiller	Size Range	Full-Load Efficiency (kW/ton)		
Туре	(Tons)			
Thermal Care TCW - Magnetic Bearings	60 - 700 +	0.35 - 0.58 (0.2 part Load)		
Centrifugal	100 - 1500+	0.49 - 0.68		
Screw	40 - 1100			
water-cooled		0.61 - 0.70		
air-cooled		1.1 - 1.3		
Scroll	1/2 - 130			
water-cooled		.7095		
air-cooled		1.2 - 1.4		
Reciprocating	1 - 400			
water-cooled		0.8 - 1.0		
air-cooled		1.41.6		

Chillers are typically designed for maximum efficiency at 70% to 80% of their full-load.

Generally below about 30% full-load, their part-load efficiency starts to deteriorate rapidly.

The N.F.C. is at its peak efficiency at about 30% to 40% full load when bin hours are highest

Cooling EER = 15 to 40 IPLV= 31+/- Full Load=19+/-

<u>Near Frictionless Compressors = Ultra High</u> Efficiency Chillers, Unloadable to 10-20% With High

Lowest Operating KW / TON = Highest C.O.P.'s

TCW-B ENERGY RECOVERY CHILLER, MACHINE C.O.P. 15.0 14.5 45F LWT □40F LWT △35F LWT 30F LWT 025F LWT 14.0 13.5 50% 13.0 Load 12.5 12.0 11.5 TYPICAL DESIGN 11.0 RANGE FOR A.E.R. 10.5 10.0 75% 25% 9.5 Load TYPICAL DESIGN Load 9.0 8.5 0.0 RANGE FOR GEO-8.0 EXCHANGE ONLY 7.5 100% 7.0 4 Load 6.5 6.0 5.5 ۲ 5.0 ۰ 4.5 ۰ 4.0 3.5 3.0 15 35 5 10 20 25 30 40 45 50 55 60 65 0 Each supply water temp. is graphed ECWT TO LCWT : OPERATING DIFFERIENTIAL TEMPERATURE at various part load conditions and

Blake Equipment Co.: Jeff Harrison

operating differiential temperatures.

ECWT = ENT COND WATER TEMP LCWT = LEAV CHILL WATER TEMP

Non-Linear Efficiency Example

The ability of a NFC to move energy from one place to another with low cost has changed what makes sense to do today

Calculating Fuel Switching Economics

BTU/\$ @ System Efficiency

Heating System Efficiencies and Fuel Costs

FUEL	UNITS	Equivalent No.2 Fuel Oil Price	\$/UNIT	BTU/UNIT	BTU/\$ AT SYS. EFF.	SYSTEM EFF.	CO2 LBS/THERM
Electric	KWH, peak	\$3.73	\$0.13	3,415	26,269	100%	35.86
Propane, atmospheric	Gallon	\$3.36	\$1.88	91,500	29,202	60%	23.17
No. 2 oil	Gallon		\$2.27	140,000	43,172	70%	23.06
Propane, condensing	Gallon	\$2.08	\$1.88	91,500	47,210	97%	14.33
Natural Gas, atmospheric	Therm	\$1.88	\$1.15	100,000	52,174	60%	23.17
Geothermal (cop 2.5)	KWH, peak	\$1.70	\$0.13	3,415	57,792	220%	16.30
Kerosene (monitor)	Gallon	\$1.68	\$2.15	135,000	58,395	93%	17.15
Wood	Cord (20%mois	\$1.31	\$200.00	30,000,000	75,000	50%	44.39
Geothermal (cop 3.2)	KWH, peak	\$1.29	\$0.13	3,415	76,181	290%	12.37
Natural Gas, condensing	Therm	\$1.16	\$1.15	100,000	84,348	97%	14.33
Geothermal (cop 5.0)	KWH, peak	\$0.79	\$0.13	3,415	123,465	470%	7.63
N.F.C. (COP 8)	KWH, peak	\$0.48	\$0.13	3,415	202,273	770%	4.66

<u>High BTU / \$... & ... Low CO2</u>

The incentive to conserve - Payback

THE ENERGY INDEPENDENCE PIE

Burning Biomass?

Wood Chips & Wood Pellets

24

Likely Damp Likely Dry

Great for low BTU/\$ but still emits high CO2

Often has hidden higher maintenance costs Copyright TBS & BHGUSA 2014

The Carbon Factor

CO2 LBS/THERM

Copyright TBS & BHGUSA 2014

Applications for the:

Near Frictionless Compressor

Near Frictionless Chiller

Copyright TBS & BHGUSA 2014

In New England Conditioning Outdoor Air Is Costly (\$3-\$5/Yr.CFM) often up to 40% of your energy \$

Nearly all of this energy can be recovered with the NFC using Active Energy Recovery

Ventilation Energy Recovery

- Air to Air Energy Recovery Units
 - Heating or Cooling
 - 50-70% efficient
 - Fixed Plate or
 - Wheels
 - Do not over
 ventilate !
 Check CO2

Courtesy Renewaire

Active Energy Recovery

The 40°F chilled water created by the operation of the NFC can be used 24/7 to recover energy from any source warmer than the 40°F chilled water,

Other types of heat exchangers typically work efficiently when natural conditions create low temperatures for energy recovery, but many hours of potential energy recovery are missed when temperatures are more moderate.

More Energy Recovery with a NFC – Active Energy Recovery

Run-Around Loop Verses Active Energy Recovery Chiller Loop 20.000.000 Run-Around Loop AER Chiller \$ 675 \$/YR. \$ 1,265 \$/YR. 17.500.000 SAVINGS PER 1,000 CFM. 15.000.000 CUMULATIVE ENERGY HARVEST 12,500,000 PER 1,000 CFM IN EACH BIN. ANNUAL BTU'S PER BIN PER YEAR Active Energy Recovery 10,000,000 with a NFC recovers energy shown between 7.500.000 lines 5,000,000 2,500,000 0 62.5 57.5 52.5 32.5 27.5 -12.5 67.5 47.5 42.5 37.5 22.5 17.5 12.5 7.5 2.5 -2.5 -7.5 Temperature Midpoint of Bin (°F) 529 675 320 214 891 795 802 636 609 148 59 936 787 278 84 41 4

Multi Source Geo = More Energy Recovery

D.O.A.S. fresh air unit with secondary "dual purpose" energy recovery coil and heat rejection coil. Recovers more energy in mild weather when heat exchangers are less efficient

Copyright TBS & BHGUSA 2014

Multi-Source Geo-Exchange Applications for the:

Near Frictionless Compressor

Near Frictionless Chiller

What energy stream are your throwing away that a <u>NFC</u> could recover?

- Exhaust Air: 70°F
- •Waste Water: 100°F
- •Thermal Solar: 55°F to 80°F?

By using solar panels as "source energy" when they are too cold to be effective making DHW

Source & Load Temperatures & System Design Variations

Multi-Source **NFC** Concepts

Solar Hot Water Heating System

NFCs' can quadruple the operating hours of thermal solar panels in the winter

Drain back solar panels provide direct solar heat AND can switch to use 40°F NFC chilled water for multi source geo-exchange when DHW is not being produced.

Selecting Solar Collector Type

Geo-Exchange Design with <u>NFC</u>s'

New Geo-Exchange Methods:

- 1. Under-slab Horizontal
- 2. Thermally enhanced HDPE (GPX)
- 3. Increased surface area:
 - a. 4"x2" Concentric w/ GPX
 - b. Twister 4 🛓 U-Tube

Horizontal Grid & Header

Geo301509" 0450760

GeoPerformX Tubes 30 ³/₄" tubes 150' long 9" O.C. 4500' total 760' per ton

Under slab geo-exchange bed installed inside the building foundation requires less area where the field is shielded from radiational cooling to space, 640' per ton

Enhanced Thermal Conductivity

Copyright TBS & BHGUSA 2014

Versa Profiles Enhanced thermal conductivity GeoPerformX pipe can reduce the required borehole length for a geo-exchange field by 10% TO 25%.

The pipe has a greater advantage in buildings that cool by day and heat by night. "put and take" Geo-Exchange

Horizontal Header & Grid Bed

Spacer made of 2x4's with holes driller 9" O.C. then ripped down middle to make a "comb" type spacer easily applied.

> Total bed = 96 300' long ⅓" GeoperformX Tubes

Total bed = 32 150' long $\frac{3}{4}$ " GeoperformX Tubes

Copyright TBS & BHGUSA 2014

Under slab Horizontal Hybrid Thermal Solar – Geo-Exchange

Enhanced thermal conductivity GeoPerformX tube to extract heat

Copyright TBS & BHGUSA 2014

A layer of PEX tubing to store thermal solar heat in the same area as the Geo-exchange Slinky

Hybrid Geo Ground Temperature

Traditional GSHP designs result in COP's from a low of about 2.8 to a high of about 3.6 compared to this hybrid design with COP's of 4.4 to 5.0, reducing operating KWH by about half, making net zero attainable.

Displacement Ventilation (cooling energy saving, less pollutants)

Uses lower temperature heating air, well suited for <u>NFC</u> application

High Efficiency Cooling & Drying

Use a NFC to recycle energy from dehumidification systems and other cooling zones to locations where heating is needed.

Case Studies

Using The Danfoss Turbocor Near Frictionless Compressor

Copyright TBS & BHGUSA 2014

The Community Music School of Springfield, ма

A projected geo-exchange borefield of 27, 500' HDPE U-Tubes was replaced with a design of 6, 1,100' deep concentric GeoperformX® borehole heat exchangers

6 borehole heat-exchangers located in side alley

Graphic Courtesy of Jeffrey. J. Harrison, PE , The Blake Group

Community Music School of Springfield

CMSS Solar-Geo Hybrid Energy System DDC Control Screen

Community Music School of Springfield

Panels operate 400% more hours for multi-source operation than for DHW alone

18 4'x10' drain back solar panels provide direct solar heat or use 40°F chilled water for multi source geo-exchange

Concentric Borehole @ 1,100'Depth

Deeper boreholes produce higher quality energy with a faster recovery rate 3

The Community Music School of Springfield, MA

Existing Energy used compared to a computer simulation of alternative energy harvested and purchased energy, 33,000 SQ-Ft Office Building								
A/C Loads	Existing Energy		Calculated Base Case Distributed Heat Pumps		Hybrid Solar / Geothermal New Conditions Energy		Hybrid % Savings	5
Peak Energy	67,237	KWH	55,131	KWH	22,888	KWH	66%	
Off Peak Energy	1,492	KWH	988	KWH	587	KWH	<mark>61%</mark>	
Fuel Gas, Heating								
Peak Energy	19.512	Therms	14.634	Therms	1.836	Therms	91%	
Off Peak Energy	11,195	Therms	8,396	Therms	1,203	Therms	89%	
Peak Energy	· · ·		141,462	KWH	54,363	KWH		
Off Peak Energy			81,164	KWH	31,147	KWH		
Solar Energy Used								
Peak Energy	0	Therms	0	Therms	1,920	Therms	56223	KWH
Off Peak Energy	0	Therms	0	Therms	659	Therms	19297	KWH
Geothermal Energy Used								
Peak Energy	0	Therms	0	Therms	16,911	Therms	495198	KWH
Off Peak Energy	0	Therms	0	Therms	9,650	Therms	282577	KWH
Recycled Energy Used								
Peak Energy	0	Therms	6	Therms	6	Therms	163	KWH
Off Peak Energy	0	Therms	0	Therms	0	Therms	0	KWH
	00 707	T 1	00.000	-	00.405	-	1	
All sources Heat Therms	30,707	Therms	23,030	Therms	32,185	Therms		
KWH converted to Therms	2347		9519		3722			
Total all energy in Therms	33,054		32,549		35,906			
Purchased Energy in Therms	33,054		32,549		6,761		80%	K

Copyright TBS & BHGUSA 2014

Overall reduction in KBTU/SF/Yr

The Rundlett Middle School, Concord NH Reduced Ventilation Energy, Saving \$62,600/Yr.

——Retrofit the full building with Active Energy Recovery ventilation systems

Copyright TBS & BHGUSA 2014

Rundlett Middle School 240 ton Smardt N.F.C. used for active energy recovery

Copyright TBS & BHGUSA 2014

Rundlett Active Energy Recovey

For a retrofit where a DOAS is not pratical, installing multiple coils for active energy recovery can make a lot of sense

ENERGY RECOVERY MODE

Calculating Energy Recovery Economics

Fuel Cost Sensitivity

Questions

William A. Turner, M.S., P.E.

Turner Building Science & Design, LLC

http://www.turnerbuildingscience.com

Jeffry J. Harrison, PE The Blake Group

Jeff.harrison@bghusa.com 207-329-2454

Thank You

© Turner Building Science, 2014 All rights reserved