

Taking Control to Get to Net Zero

Maribella Ibarra, PE, LEED AP BD+C, Sandra LaFlamme, PE, CEM

February 6, 2013

Efficiency Vermont does not endorse any particular partner or product in this presentation. Efficiency Vermont neither expressly nor implicitly warrants the performance of any partner or product. Contact your contractor or supplier for details regarding equipment warranties.

Taking Control to Get to Net Zero Part I - Concepts & New Technologies

- I. Controls & Net Zero Energy Goals
- II. Wireless Controls -Good Option for Smaller Businesses
- III. Communications within the Controls
- IV. Communications with the Facility Owner
- V. Options for Hardware Components
- VI. Analytics Managing Data, Getting to & Staying at Net Zero
- VII. Vermont Case Study Vermont Public Radio

Taking Control to Get to What?

Net Zero Energy =

"Residential or commercial building with greatly reduced energy needs through efficiency gains such that the balance of energy needs can be supplied with renewable technologies."

National Renewable Energy Laboratory, US Dept. of Energy

Controls are Vital to Net Zero Energy Success!

nbi new buildings institute

Technologies

Passive systems, high performance building envelopes and the evolution of technologies for monitoring and controlling energy systems are key developments toward extremely low energy buildings.

New Buildings Institute "2014 Getting to Zero Status Update," page 25

Controlling a Net Zero Energy Building

All ventilation on occupancy and carbon dioxide sensor controls

Photo courtesy of Putney School Design Information by Maclay Architects

Energy Monitoring Important

http://www.putneyschool.org/content/fieldhouse-information

Energy monitoring and tracking at a Net Zero Energy Building

Ϋ́́T	he Putney	y School		Programa Search	
Admission	What We Do Student	Life People New	vs Resources Al	umni Support	
Home	Saving:	s 🚺 Solar	Info fill Ch	arting Kiosk	
Historic	kWh	\$ Dollars	CO ² (T)	Oil Barrels (bbl)	
Today	43.21	5.61	0.02	0.02	
Week	643.12	83.60	0.42	0.37	
Month	2279.21	296.29	1.51	1.34	10.0
Year	2279.21	296.29	1.51	1.34	
Lifetime	208511.01	27106.43	138.55	122.65	

Vermont Existing Commercial Building Market

Potential Controls-Related Savings

Source FEMP Fact Sheet: "Facility Metering for Improved Operations, Maintenance & Efficiency" January 2005

What Does This Mean?

Controls can be used to:

- Commission
- Re-commission
- Monitor
- Operate building

Help you achieve net zero

Net Zero Office Building, Courtesy MMM Group

There is Benefit for Any Budget

Controls - Related Improvement	Cost	Savings
Retuning or Optimizing Existing Controls	\$	\$
Whole Building Energy Monitoring	\$	\$
Add Stand-Alone Control	\$	\$
Demand-Limiting - Demand Savings	\$\$	\$
Retuning & Automated Data Analytics	\$\$	\$\$
Add Web-based Control w/Graphical User Interface to Existing DDC System	\$\$\$	\$\$\$
Extensive Energy Monitoring with Continuous Controls Optimization	\$\$\$	\$\$\$
Stand-Alone to Web-based User Interface	\$ to \$\$\$\$	\$ to \$\$\$
Energy Management Services Provider w/Extensive Energy Monitoring	\$\$ to \$\$\$\$	\$\$\$\$

No matter where your building falls on the controls spectrum, there are control improvements to fit your budget and goals!

Wireless Controls Inexpensive & Good for Smaller Businesses

I. Wireless Controllers

- II. Communication
- III. Mesh Networks

Classic Honeywell T87 came out in 1953 with setback available in the1960s

7-day Programmable thermostats came out in the 1970s

First wireless thermostats become available in the 2000s

More Wireless Controls Becoming Available Every Year

Wireless Valve and Damper Actuators

2012 AHR Expo[®] INNOVATION AWARDS Value Impact Application HONORABLE MENTION Wireless Temperature and Humidity Sensors

Wireless Hotel Room HVAC Controls

> Wireless Terminal Equipment Controllers

Hampton Inn

GEM Link® Wireless by Lodging Technology

\$17,000/yr Estimated Energy Savings

Why use wireless controls in existing buildings rather than wired controls?

- Faster installation
- Lower labor cost
- No extensive demolition or re-wiring
- Flexible redeployment when the building space changes
- Good option for historic buildings

Wireless Controls - How do they Work?

They transmit information on radio waves similar to devices that we're all familiar with: laptops, smartphones, and garage door openers, for example.

Wireless Controls Inexpensive & Good for Smaller Businesses

I. Wireless Controllers

II. Communication

III. Mesh Networks

Wireless Controls -How do they communicate?

Wired controls have communication protocols or standards like BACnet, Modbus, or IP/Ethernet, but what protocols do wireless controls use to communicate?

- They use protocols like ZigBee Alliance or EnOcean.
- ZigBee is common in the U.S. Unfortunately, it operates in the crowded Wi-Fi frequency range and needs to have batteries replaced periodically.
- EnOcean is the popular choice in Europe. It doesn't need batteries since it uses very low power and harvests its own energy for operation.

Wireless Communication Protocols

Table 1:	Comparison o	of BAS w	vireless protocol	ls and commor	non-BAS	wireless	technology.
----------	--------------	----------	-------------------	---------------	---------	----------	-------------

Common Name	ZigBee	EnOcean	Z-Wave	RedLINK	Wi-Fi
Standard	802.15.4	ISO/IEC 14543-3- 10	IEEE 802.15.4	N/A	IEEE 802.11 a/b/g/n/ac
Operating Frequency	868.0-868.6 MHz ¹ , 902 - 928 MHz ² , 2400 - 2483.5 MHz ⁴	315 MHz ³ , 868 MHz ¹	902 - 928 MHz²	902 - 928 MHz²	2,400 - 2,483.5 MHz³
Industry Application	BAS Controls & Automation	BAS Controls & Automation	Home, Security, and Entertainment	Home, Security, and Entertainment	PC Wireless Peripherals
Battery Life (days)	100 - 1,000+	No Battery	100 - 1,000+	N/A	0.5 - 5
Network Size	65 <i>,</i> 536	N/A	232	N/A	32
Max Data Rate (kb/sec)	20 - 250	125	9.6	N/A	11,000+
Transmission Range (ft)	approx. 300 ft	90 ft (indoors) 900 ft (outdoors)	90 ft (indoors) 300 ft (outdoors)	90 ft (indoors) 300 ft (outdoors)	Approx. 300 ft

¹Europe, Canada ²North America ³United States Only ⁴Worldwide

engineer *Copyright © 2012 Consulting-Specifying Engineer* (<u>www.csemag.com</u>), used with permission

CONSULTING - SPECIFYING

Wireless Controls Inexpensive & Good for Smaller Businesses

- I. Wireless Controllers
- II. Communication

III. Mesh Networks

Wireless Mesh Network (WMN)

Benefits of Mesh Networks

- •Cost effective approach to deploying a sensor network.
- •Technology is easy to install and maintain.
- •Mesh networks automatically adjust to changes in the network structure.
- •Nodes can be added, removed, replaced or relocated without the need for traditional network administration.
- •Mesh networks can optimize or increase visibility into dynamic systems such as temperature and humidity inside a commercial building without the cost of a wired network.

Courtesy AutomatedBuildings.com and Mark Pacelle, VP Marketing, Millennial Net

Communications Within the Controls

I. Wired Protocols

II. Security

Communication Protocol Summary – Direct Digital Control (DDC) Systems

•BACnet – Established by ASHRAE in 1995 to promote "interoperability"

•Lon – LonWorks is the overall technology & LonTalk is the protocol

Proprietary

•TCP/IP

Which is Better For Your Business?

Open System

Advantages:	
•Freedom of choi	ce
 Cost benefits 	
Potential for Ease	sy Integration

Disadvantages: •Multi-vendor system may be more complex to operate & maintain •Staff considerations - may need more technical expertise

Proprietary System

Advantages: •One-stop shopping •Single source responsibility •Proven performance

Disadvantages: •Cost of Service & Upgrades •Less Choice

If You Want Open Systems - Are they?

Building owners beware! Just because a building automation system can speak Lon or BACnet, does not mean that the system is truly open.

- 1. Can multiple factory trained contractors work on the system?
- 2. Are controller programming tools available to the building owner and service contractors?
- 3. Does the building owner have access to the same training as the staff that the control manufacturer's technicians receive?

The BAS is only open if the answer is yes to all 3 questions!

Source: www.controltrends.org

Communications Within the Controls

- I. Wired Protocols
- II. Security

Concerned about Security?

Cyber security is of paramount important to building owners, property management firms, and facility managers.

Include the IT experts in your building's controls system architecture and controls purchases, if possible.

Don't rely on promises from vendors that their products are "secure."

Communications With the Facility Owner

I. Dashboards

II. Web-based User Interfaces

Energy Dashboards

Show real-time energy data on computers and/or displays located on site & can motivate building users to conserve energy

Efficiency Vermont

Communications With the Facility Owner

I. Dashboards

II. Web-based Controls with User Interfaces

Web-based Graphical User Interface

More Web-based Graphical User Interface

Controls + HVAC Improvements

\$7,000/yr Estimated Savings

Web-Based Control for Multiple Systems

"The iWorx controls package really lived up to its promise. It's now my system of choice."

When Kelly Backus was called into the Coventry Elementary School in Coventry VT, he found a building management system that was a spaghetti bowl of wiring snarls, an unreliable boiler that

continuously short-cycled, and town taxpavers who were fed up with the system's excessive fuel consumption.

Plug and go.

Kelly turned to iWorx*, the web-based Solutions Every iWorx controller is

f 🔤 🕒 in Blog www.taco-hvac.com

ready to run, right out of the box. Its LON-based, open protocol backbone features application- and equipmentbased controllers that are pre-programmed. There's no complicated field member Alan Desroches. What's more, commissioning; just input setpoints, then start controlling and monitoring the system on-site or through a web enabled device. Kelly Backus knows how easy it is: "You pretty much just plug the modules in and go. I can access the system wherever I can get online".

Significant savings.

Kelly replaced the oil-guzzling boiler with an 800 MBH, three-pass, cast iron Biasi boiler, controlled by a BLMC iWorx building management, monitoring, and module. Five fan coil units controlled control platform from Taco Electronic by DXU3 Worx modules supplement the baseboards throughout the class

rooms. The savings started immediately "The mechanical system upgrade quickly saved thousands of dollars," said school board and building committee in March. 2011. the school used 1.430 gailons of oil. With the new system a vear later. oil consumption was down to 690 gallons, a savings of over 36%.

Get in to iWorx.

Deliver the sustainability and system efficiency your commercial and upscale residential customers want with IWorx web-based building, management, monitoring, and control. Visit us online to learn morel

Web-based Control - continued

Home screen sample for simple web-based controller:

LC12	08:58	PREV	HOME
Controllers	Access Control	Lighting Zones	Alarms (372)
Schedules	Groups	Holidays	Utilities
Trends	Remote LCIs	Log Out	

Coventry Village School

Scheduling Made Easier

Estimated Controls & Boiler Energy Savings = \$12,000 per year

Options for Hardware Components

I. Whole Building vs. Sub-Metering

II. Stand alone vs. Integrated

Electric Metering Hierarchy

Diagnostic Capability

Source FEMP 2010 Operations & Maintenance Best Practices Guide 3.0

Whole Building Energy Monitoring

Price range for material and labor:

\$3,800 to \$4,900 plus \$110/yr for Obvius on-line service

OBVIUS 3300 NW 211th Terrace, Hillsboro OR 97124 Ph: +1-503-601-2099 Copyright \$ 2001-2010 Obvius, All rights reserved.

Whole building Instantaneous Electricity & Propane Use

Free Energy Charting and Metrics Tool from Pacific Northwest National Laboratory

http://buildingretuning.pnnl.gov/ecam.stm

Sub-Metering Yields More Data

- Sub-metering with web-based user interface
- Scheduling of lighting and mechanical at the zone level
- Alarm and energy monitoring and trending capabilities
- Set-point and setback controllable
- FEMP "Operations and Maintenance Best Practices: A Guide to Achieving Operational Efficiency" Release 3.0, August 2010, Chapter 8 Metering for Operations & Maintenance

http://www1.eere.energy.gov/femp/pdfs/omguide_complete.pdf

e o proto1									
/ 👌 proto1	× C							<u></u>	
de Gauge pr	oto1			View LAN A	ccess Tools Set	tings Help			-
Summary for time-	period shown in g	4/25/2013 11:06am - 4/26/2013 1 raph	1.06am	mmary over las	t 30 days			•	
Energy Used Energy Generated Net		(approx. \$7.00 used) (approx. \$8.20 saved) (approx. \$1.20 earned)	En En Net	ergy Used ergy Generated t	1.23 MWh 975 kWh 250 kWh bought	(approx. 5 (approx. 5 (approx. 5		d) ed) t)	
							9 kW 1 9 kW 1 8 kW 1 6 kW 1 3 kW 1 1 kW 0	0W 90W	
12pm	3pm 6	pm 9pm	12am	3am	6am	9am		Current	
Power us Grid gen. Solar SPR	ed luse t+ gen./use	Energy from grid		Power general Grid* pos /neg PHEV (Grg&B	ted 8 3. (Rh) gen./use (Energy Solar SP	to grid *R gen Ause go+SPR gen A		

AcquiSuite

OBTUS

1.050

0

M

.

• Passa a set a 7a autor (F03

· Patre at an Assgen Lower gard Hade a

Anne de l'Alexandre a colorado

2.014

 $-2\kappa + \kappa k$

• 4. dr / Un.

a second

Options for Hardware Components

I. Whole Building vs. Sub-Metering

II. Stand-alone vs. Integrated

Stand-alone Controls

- Low cost
- User friendly
- High energy efficiency & cost savings due to pre-programmed energy saving functions
- Flexible oftentimes can be expanded

Essex Alliance Church

\$4,000 /yr Estimated Savings

Integrated Controls

- Monitoring and control capabilities from a single point
- Depending on security requirements, may be accessed on the local area network or remotely
 - Typically more expensive than standalone control
- High energy saving potential

•

Demand-Limiting at Stowe Middle/High School

Don't Forget About the Plug Loads!

Consider installing computer power management to help control plug load energy consumption

Choose ENERGY STAR® IT Equipment

Managing the Information & Getting to and Staying at Net Zero

Now you can see it, but how do you manage it to help get to net zero?

Automated Fault Detection Data Analytics has arrived!

Data analytic software is being developed by small and large companies alike to handle high velocity, large volume, varied data

Automated Fault Detection Data Analytics

SkySpark by SkyFoundry offers alerts to notify facility manager or Owner of energy consumption, equipment alarms, or energy savings.

Local vendors include Control Technologies & Temperature Controls of Vermont.

Coppertree Analytics is commonly used in Canada. Vendors include Delta Controls.

Retroficiency

enerav

Retroficiency and **Energy Ai** data analytics with reports are actively being investigated currently by Efficiency Vermont for possible benefits for Vermont customers.

Data Analytics - Brattleboro Union High School

Targets

2 sparks

All

Group

0

5

Brattleboro UHS

Efficiency Vermont

Rules

Newest Energy Dashboards

Public Energy Dashboard

Energy Management Module w/ Automated Fault Detection Data Analytics Software

•

•

•

Wire McGill

Software

- Collect and organize data
- Plot energy demand in real time against external factors T_{out}, RH_{out}, wind speed and direction, net solar radiation

- the project
- Generate reports to follow trends in long-term energy use
- Train "typical curves" to benchmark buildings against themselves and detect anomalies
- Engage building occupants

Energy Management Service Providers

Vermont Public Radio

Vermont Public Radio

- Radio station in Colchester, Vermont
- 14,000 square foot with mix of one and two stories
- Late 19th century building renovated ~1993
- Stand alone controls
- Existing HVAC System:
 - DX cooled split systems
 - Air handlers
 - Natural gas-fired boiler
 - Propane-fired furnaces

VPR Challenges

- Extremely uncomfortable for staff in some areas
- High HVAC energy costs
- High maintenance costs
- Early HVAC equipment failure

VPR First Step

Vermont Public Radio hired a local energy management company, to help them with a solution.

They specified reconfiguration of the control structure to allow for energy and environment optimization.

Wireless controls one part of the hardware component specified to meet control plan.

Project Scope

- 1. Capability for auto start/stop of boiler & pumps from multiple HVAC control modules
- 2. Auto start/stop air handlers
- 3. Integrated control of studios from one command module
- 4. Integrated control of air handlers & their heating coils, perimeter heat loops, separate cooling coil and multiple location temperature sensing.

VPR Results

- Building comfort improved and complaints stopped
- No unscheduled maintenance on HVAC equipment was necessary between July 2011 and April 2012
- 16% drop in electric energy consumption
- 29% drop in natural gas consumption
- 27% drop in propane consumption
- Incentives provided by Efficiency Vermont

What does a Poem and Controls have in common?

VAV Control Sequence & Schedule

VAV shall maintain room temperature at

- 72+/- 2.5F during occupied times Min. Occupied CFM 1,000
- During unoccupied times, the airflow shall be reduced to 100 cfm. Heat only at temperatures below 65F and cool only at temperatures above 78F.

Device	Design	Min.	Temp
	cfm	cfm	spec
VAV-1	1,200	1,000	72+/-2.5F

Controls have Energy to Save All complex and expensive things

Understand them And you'll find they're worth The cost

"Taking Control to get to Net Zero" Part II

- I. Energy Savings Initiative (ESI)
- II. Data Analytics
- III. Advance Energy Design Guide
- IV. Case Study: Bond Auto
- V. Data Center, The Energy Valve, Hybrid Boiler Controls (Time Permitting)

The ESI Team

Delivered! Reducing energy consumption by over 18% and Improving the Energy Star Score by 30 points

Control Measures Implemented by ESI

- Replaced faulty sensors
- Occupancy Controls
- Calibration and scheduling of VAV boxes
- Min O/A reduction (meeting ASHRAE Ventilation requirements)
- Demand Control Ventilation in Cafeteria and select conference rooms
- Replacement of VFD (existing VFD near EOL)
- Static Pressure Reset and Supply Air Reset
- Dual Enthalpy Economizers
- Changed Dew Point Spec (One unit)
- What is the next Step? Continuous Energy Improvement

Efficiency Vermont >8% control energy savings; Payback <2 years

 ✓ Sep-2012 ►) 		Chart Grid
HISTORIES Select Rollup	100 % - cvmc ahu2 coolingValve	
cvmc ahu2 coolingValve Auto/avg	90 %	
	80 %	
	70 %	
	60 %	
	50 %	
	40 %	
	30 %	
	20 %	
	10 % Sat 1st Tue 4th Fri 7th Mon 10th Th	nu 13th Sun 16th Wed 19th Sat 22nd Tue 25th Fri 28th Mon 1st

Is the room calling for cooling?

	Historian CVMC Maribella Ibarra Logout SkySpark
	History Correlate
Week of 2-Sep-2012 HISTORIES Select Rollup cvmc ahu2 VAVs reheat120 Auto/Auto ▲ cvmc ahu2 VAVs reheat121 Auto/Auto ▲ cvmc ahu2 VAVs reheat121 Auto/Auto ▲ cvmc ahu2 VAVs reheat121 Auto/Auto ▲ cvmc ahu2 VAVs reheat122 Auto/Auto ▲ cvmc ahu2 VAVs reheat123 Auto/Auto ▲ cvmc ahu2 VAVs reheat124 Auto/Auto △ cvmc ahu2 VAVs reheat125 Auto/Auto △ cvmc ahu2 VAVs reheat126 Auto/Auto △ cvmc ahu2 VAVs reheat127 Auto/Auto △ cvmc ahu2 VAVs reheat128 Auto/Auto △ cvmc ahu2 VAVs reheat129 Auto/Auto △ cvmc ahu2 VAVs reheat120 Auto/Auto △ cvmc ahu2 VAVs reheat120 Auto/Auto △	History Correlate 4:50:54am EDT Mon 3-Sep-2012 • cvmc ahu2 VAVs • cvmc ahu2 VAvs reheat123 • cvmc ahu2 VAvs reheat124 • cvmc ahu2 VAvs reheat127 • cvmc ahu2 VAvs reheat124 • cvmc ahu2 VAvs reheat124 • cvmc ahu2 VAvs reheat131 • cvmc ahu2 VAvs reheat131 • cvmc ahu2 VAvs reheat131 • cvmc ahu2 VAvs reheat132 • cvmc ahu2 VAvs reheat131 • cvmc ahu2 VAvs reheat131 • cvmc
cvmc ahu2 VAVs reheat131 Auto/Auto cvmc ahu2 VAVs reheat132 Auto/Auto cvmc ahu2 VAVs reheat133 Auto/Auto	10 % • cvmc ahu2 VAVs reheat134 13.2 % 0 % • cvmc ahu2 VAVs reheat121 11.97 % Sun 2nd Mon 3rd Toe 4th Wed 5th Thu 6th

Efficiency Vermont

After sequence change 2013

Efficiency Vermont

Pre-Occupancy Control

Post- Occupancy Controls

Return Fan Pre and Post

Return Fan Amps (Post)

VAV Calibration and Scheduling SF4&2 (M&V)

Office AHU Schedule (example)

Efficiency Vermont

Vermont has great weather for economizers

Sensor Accuracy

Get an accurate o/a weather station

Efficiency Vermont

Toward Net Zero What should I do?

Free download: https://www.ashrae.org/standards-research--technology/advanced-energy-design-guides

Not in the Picture: Advance Design Guide for K-12, Advance Design Guide for Retail

Advanced Energy Design Guide

- Recommendations to Achieve 50% savings from ASHRAE 2004. Free download from ASHRAE's website
 - Lighting
 - HVAC and Service Water
 - Envelope
 - Plug Loads

Advanced Energy Design Guide

- Example: kbtu Target to achieve 50% savings for Climate Zone 6A Hospital
 - -125 kbtu/sqft. Year
 - -Plug/process 38 kbtu/sqft.
 - -Lighting 18 kbtu/sqft.
 - -HVAC 69 kbtu/sqft.

AEDG Water Source Heat Pump HV-4

EER 17.6/15.0

Lower wT, Higher EER, Higher efficiency

COP 5.7/5.0

Higher wT, Higher COP, Higher Efficiency

WSHP unit should incorporate a solenoid valve to shut off flow of circulating loop water when the compressors are off.

A "newer" way for small commercial, retail, and institutional

111

111-

111-1

-111-1

Daiman

Office Currier Use

Ream.

Attach additional sensors and get more out of your Solution

Want to have even more control over your environment? All you have to do is add the ecobee Remote Sensor Module (RSM). The ecobee Remote Sensor Module is the newest technology designed to support the award- winning ecobee line of products. It allows additional sensors to be connected to the ecobee Smart Thermostat or Energy Management System.

Efficiency Vermont

With Averaging Capability

DRive

Cilling.

Cubicle Area

Supply Air Reset

- Supply air reset
- 50F-58F AEDG Office CLZ 1,2,3
- 50 61F on other climate zones
 - Disable reset if the space exceeds 60%

O/A is not always "free" Est. Cost of o/a (24x7)

About \$3.38/CFM a year

BTU/unit of fuel	138000
Cost of fuel	\$3.26
cost of electric	\$0.14

About \$2.73/CFM a year

BTU/unit of fuel	100000	BTU/therm
Cost of fuel	\$1.20	
cost of electric	\$0.14	

Space at 35% rh winter; 55DP summer; using tmy3 weather 8760; heating when To/a <40F **TMY3= Typical Meteorological Year**

(and About \$1.20 for ng + electric if 12hr/day 5 days a week using HDMakeup Handsdown software company)

AEDG Office HV19- Exhaust Air Systems

 "Central exhaust systems for restrooms, janitorial closets, and break rooms should be interlocked to operate with air conditioning systems" "During unoccupied period the system should remain off"

Delivery of Outdoor Air to The Space ASHRAE 62.2007

Example:

Conference room O/A rate 5 cfm/person + .06 cfm/sqft ;

Occupancy 50 people/1000 sqft

(1000 *.06 + 50*5)= 310 cfm Vbz (Breathing Zone)

Plus adjustments for the effectiveness of air delivery

Areas that could be good candidates for DCV

- Area >500sqft
- And occupancy >40 people/1000 sqft

"Dynamic Reset of Outdoor Air" Reference: ASHRAE 62.1-2007 6.2.7

- 1. Variations in Occupancy
 - Occupancy scheduled by time of day
 - Occupancy sensors
 - Estimate of occupancy using CO2

- 2. Variation in the efficiency of the delivery of air into space
- 3. "A higher fraction of o/a in the supply due to intake of additional outdoor air for free cooling or exhaust makeup"

CO2 Sensors

- AEDG: accuracy of +/- 50 PPM at 1,000 ppm
- ASHRAE 189.1- 2011 install <u>3-6 ft. above floor.</u>
- Ca. Title 24 specifies a sensor that requires calibration no more frequently than <u>once every 5 years</u>.
- Ca. Title 24 also requires a <u>calibration certificate</u> with sensor.
- MI Recommendation- Field test for accuracy

Why Energy Monitoring?

0:38

21.9M

TIME

0:42

TIME

	TIME DISTANCE CONSUMP.	0:46 16.98 1598%	
000	1762#		

Saving \$90/month

Metering plug load

Watts up? PRO

Computer Metering Example

Office 313J

Employee was on vacation part of the time

eGauge and ECAM

Re-tuning Commercial Buildings

Re-tuning Commercial Buildings Resources

Researchers at the Pacific Northwest National Laboratory (PNNL) have developed a number of useful resources to help re-tune commercial buildings:

Energy Charting and Metrics Tool plus Building Re-tuning and Measurement and Verification (ECAM+)

Note that the Microsoft Excel^{π} file is an Excel add-on file, please refer to the user guide $\frac{1}{12}$ for instructions on how to use it.

The Energy Charting and Metrics Tool is an add-on for Microsoft Excel® which was developed to facilitate analysis of data from building (energy and other data). The tool makes extensive use of Excel pivot tables. Some key features of ECAM+ include: creation of charts to help re-tuning, creation of schedules and day-type information to time series data; filtering data from months, years, days, day-type, day of week, day of month, occupancy, temperature binned weather data, pre/post comparisons after retrofits or retro-commissioning; normalizing data and creating metrics based on consumption or equipment; creation of various load profiles or scatter charts for data selected by the user; new additions to the PNNL re-tuning charts; and new modeling and verification (M&V) for meter data.

Energy Charting and Metrics Tool (ECAM) Webinar Series Content

Source: FEMP Fact Sheet "Facility Metering for Improved Operation, Maintenance and Efficiency" (2005)

Typical electrical sub-meters (box on left) used in long-term monitoring.

5%-15% Savings

- Cost Allocation Software
- Fine Tuning of Controls
- Monthly Reports

Bond Auto is Taking Control with the help of TRIADD Electric and ENTOUCH Controls

VERMONT BARRE BARTON **BELLOWS FALLS** BENNINGTON BERLIN BETHEL BRADFORD BRATTLEBORO DERBY ENOSBURG FALLS ESSEX JCT. HARDWICK MILTON MONTPELIER MORRISVILLE NORTHFIELD RUTLAND SO. BARRE SOUTH BURLINGTON SPRINGFIELD ST. ALBANS ST. JOHNSBURY WILLISTON

	Lost? Click here	e to see the features	available to you on the	e new portal.	
cilities Owned by		16) Offices		
cue@bondauto.com	Current Weather: 7°F Ove	Local Time: 8:51am			
14 Essex		7 Day Ener	av History:	7 Day HV	AC History:
16 Offices			kWb		Minuter
16 Str Frt	Energy Now	100		1,000 —	Millutes
17 Milton		50		500 -	
18 Berlin	- KW 4				
19 Rutland	1003.65	0 TueWee	dThu Fri Sat SunMon	0 - Tu	eWedThu Fri Sat SunMon
20 Springfield		Vacan	t 🔲 Occupied	Vac	ant 🔲 Occupied
21 Bennington					
22 Bellows F					
23 Brattleboro	Controller Status				
	Controllor Nome	Tama	Cot Dointo	HVAC	Ctatus
rev next	Controller Name	lemp	ser Foints	Mode	Status
decline invitation	16 Office Dn Stairs	71°F	H: 71°	Heat	alerts 🔻
	16 Upstairs Slave	70°F	H: 70°	Heat	online
	i				
	Device Status				
	Device	Туре	Connecte	ed To	Status

The Next Step for EVT & Bond Auto?

Enter data into the Energy Star Portfolio Manager

Conclusion

There are many energy saving opportunities by understanding how the control systems in your facility are operating

By using metering and data analytics you can

- Identify measures
- Calculate energy savings
- Have the tools available to ensure the persistence of the energy reduction measures

Traditional data center

	kW	PUE	\$/kW	
System 1	51	2.14	\$ 2,432.00	1/9-1/26
System 2	37	2.1	\$ 1,743.00	10/13-11/3
System 3	20	2.5	\$ 2,115.00	10/13-11/3
System 4	41	1.8	\$ 1,397	4/14/-6/7

Efficiency Vermont

Containment +VFD + Economizer

\$10,000 Savings/Year for a 30KW data center

QUESTIONS?

What is New

- Intelligent Control Valve
- Hybrid Boiler Control Systems

The Intelligent Valve

• Before the Intelligent Valve

- PID valve (Proportional Integral and Derivative)
 - Pressure dependent

System Optimization since PID

- Temperature Reset
- Delta P reset in the water loop

2014 AHR EXPO Winners Innovation Award Automation and Controls

Belimo Air Controls (USA) BAS Data logging Energy Valve

• DT Management, Measures Flow, Pressure Independent

• Communicates (BACNet) and Web

Example- Condensing boiler efficiency

"Hybrid Boiler Controller"

http://www.esmagazine.com/ext/resources/ES/Home/Files/PDF/0909CleaverBrooks.pdf