

Heat Pump Technology

Capturing the HVAC Market in the Coming Decade

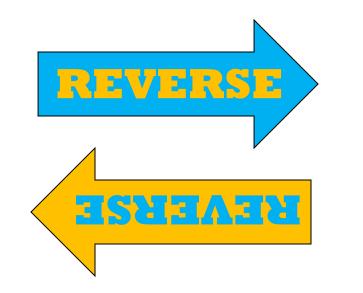
Jake Marin HVAC Program Manager Efficiency Vermont

Our Roadmap

- Brief technology overview
- Customer Economics
- Case Study
- Market potential
- Programs to accelerate progress
- Future State even more compelling

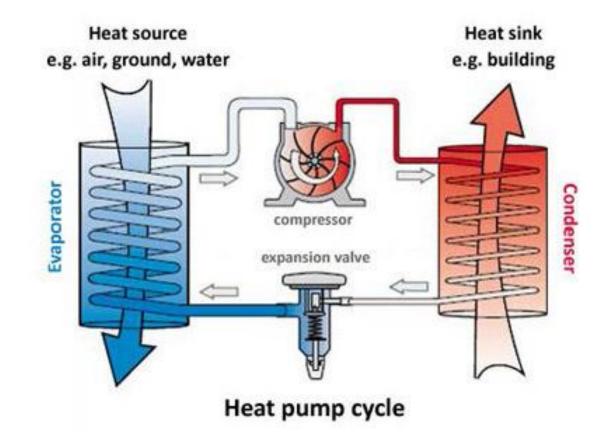
Benefits of Heat Pumps

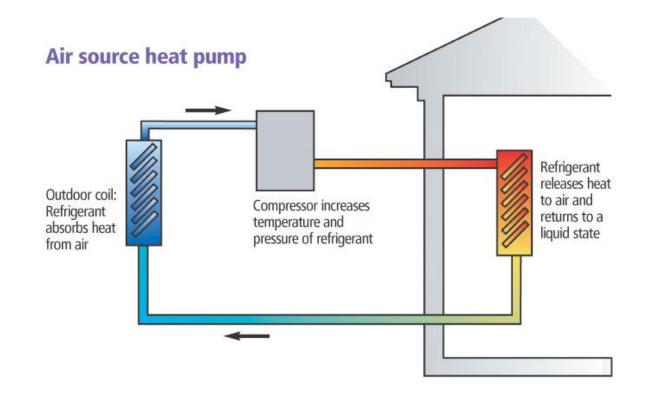
- Heating and cooling from same piece of equipment
- Cheaper heat than most conventional combustion and resistive heating systems
- Also efficient cooling with SEERs >25
- Ductless heat pumps are a quick and nonretrofit installation
- New construction reduced need for and cooling infrastructure
- Can be completely sustainable if powered renewables



A Quick Technology Primer

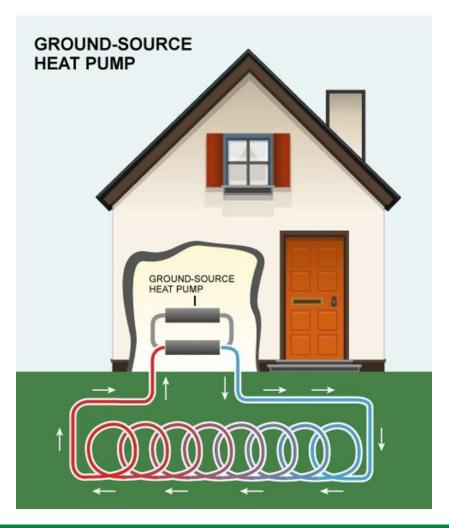
What IS a heat pump, anyway?


An air conditioner in reverse


Heat Source \rightarrow Heat Sink

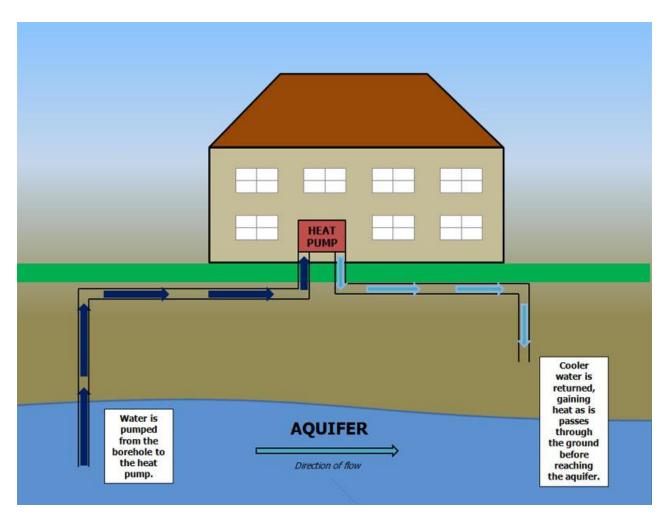
Heat Source

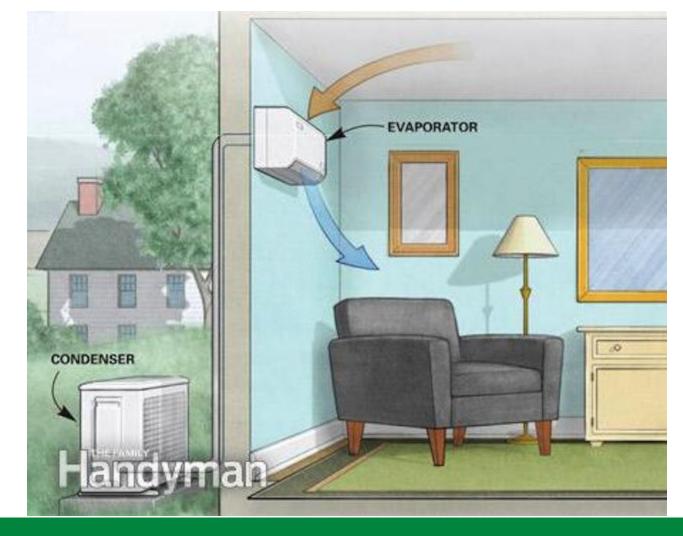
Air (Air Source Heat Pump)



Ground (Ground Source or Geothermal Heat Pump)

➢ Earth





Heat Sink – Space Heat

Air Delivered

Heat Sink – Space Heat

Water Delivered

Heat Sink – Domestic Hot Water Heat Pump Water Heaters

- Air → Water
- 1/3-1/2 the electricity as a standard electric water tank (saves 50-66%)
- Incentive programs in 28+ states
- New federal standards in 2015 will require electric DHW>55 gal to be a heat pump water heater

Source/Sink Variations

$\operatorname{Air} - \operatorname{Air}$

• Example is ductless mini-splits

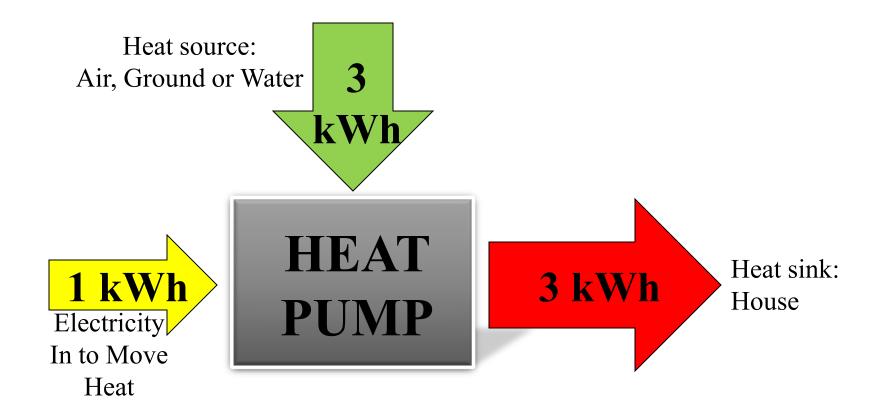
Air – Water

- Daikin Altherma or heat pump water heaters
- Water Water
- "Geothermal" or ground source feeding hydronic distribution
 Water Air
- Ground (water) source feeding into ducted air handler

World of Heat Pumps

Many Applications and Forms

- Space Heat
- Water Heat
- Cooling
- Dryers
- More?

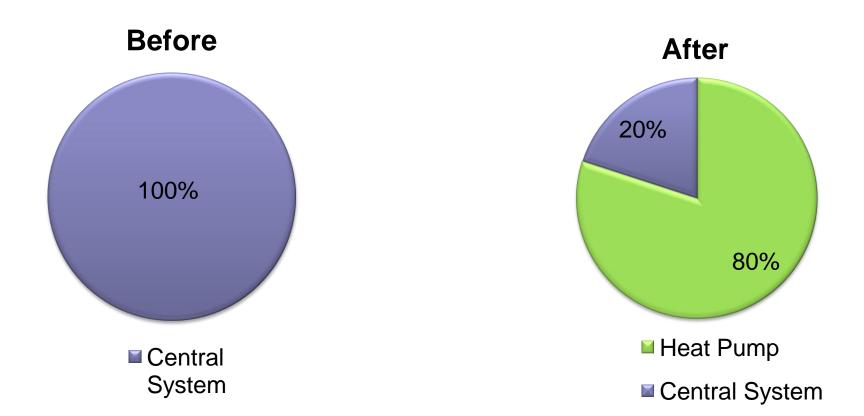

Are they efficient?

- They Move Heat, rather than Generate Heat
- Leverage heat existing in the environment rather than burn fuel to release energy
- COPs of 2.0-4.0+
 - What is COP?
 - COP (Coefficient Of Performance) = Energy Out/Energy In
- High SEER (Seasonal Energy Efficiency Ratio) Cooling
- High HSPF (Heating Season Performance Factor) Heating

So... A COP of 2-4 is equivalent to 200-400% efficiency!

More Out than In (COP of 3)?

Customer Economics



Ductless Mini Splits

The Displacement Model

Play with Numbers

House before:

- 850 gallons fuel oil (\$4/gal)
- \$3400/yr for heat (117 MMBtu)

House after:

- 170 gallons oil + 7300 kWh electricity (\$0.15/kWh)
- \$680 (oil) + \$1100 (electric) = \$1780/yr for heat (48 MMBtu)
- Net Savings \$1620/yr (69 MMBtu 59% Reduction)

A Comparison of Heating Fuels

Fuel Type	Unit	Btu/Unit	Efficiency	\$/Unit	\$/MMBtu
Wood	Cord	22,000,000	60%	\$193	\$14.62
Natural Gas	Therm	100,000	90%	\$1.55	\$17.22
Pellets	Ton	16,400,000	80%	\$247	\$18.83
Fuel Oil	Gallon	138,200	85%	\$3.72	\$29.91
Kerosene	Gallon	136,600	85%	\$4.19	\$34.08
Propane	Gallon	91,600	90%	\$2.96	\$35.90
Electricity	kWh	3,412	300%	\$0.15	\$14.65

Typical Residential Heating Fuel Costs (75 MMBtu/Yr)

Fuel	Volume	Unit	\$/Unit	\$/Year
Wood	5.7	Cords	\$193	\$1,100
Natural Gas	833	Therms	\$1.55	\$1,291
Pellets	5.7	Tons	\$247	\$1,407
Fuel Oil	603	Gallons	\$3.72	\$2,243
Kerosene	610	Gallons	\$4.19	\$2,556
Propane	910	Gallons	\$2.96	\$2,694
Electricity	21,981	kWh	\$0.15	\$3,297

 Without Natural Gas (or biomass), heating costs run \$2000-\$3000+ per year

Efficiency Vermont

Heating Fuel Cost Savings with an ASHP (COP 3.0)

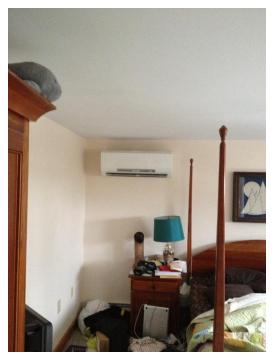
Fuel	Unit	50 MMBtu/Yr	75 MMBtu/Yr	100 MMBtu/Yr
Wood	Cords	\$28	\$41	\$55
Natural Gas	Therms	\$(136)	\$(204)	\$(272)
Pellets	Tons	\$(194)	\$(291)	\$(388)
Fuel Oil	Gallons	\$(800)	\$(1200)	\$(1601)
Kerosene	Gallons	\$(985)	\$(1478)	\$(1970)
Propane	Gallons	\$(1218)	\$(1827)	\$(2435)
Electricity	kWh	\$(1744)	\$(2616)	\$(3488)

- Savings ~\$1,000-\$2000/yr+
- Assuming 90% heating fuel offset and no cooling effects

Case Study

Building Description

- 2 Story, 3 Bedroom home in Burlington, VT
- 2280 ft2 CFA
- Some weatherization (primarily in the attic)
- Modeled design heat load ~54,000 btu/h
- Existing oil boiler 680 gallons/yr (\$2600)



Case Study - Heat Pump Installation

- 2 Mini-splits installed in November, 2012
- One Mitsubishi FE18 in dining/kitchen and one FE12 in master bedroom

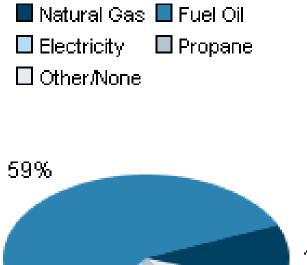
Case Study - Fuel Use Data

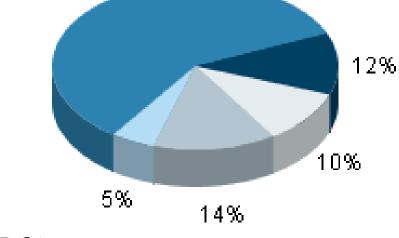
	Pre- Installation Use	Adjusted Pre- Use (for DHW)	Post- Installation Use (adj)	Difference	Savings (\$/year)
Oil (gal)	684	584	188	-396	\$1,464
Electric (kWh)	6910	NA	12,056	+6200	\$(870)
			Net Savings = \$594		

Some considerations

- 73% displacement
- All things equal, COP = 2.2 (assumes all added electric went to heat)
- Annual increase in kWh is not necessarily heating-only

Lessons Learned, Next Steps


- DHW disaggregation a wild card
- Accurate billing analysis difficult with unregulated bulk fuel deliveries
- Sub-metered data necessary for accurate evaluation
- 13 Homes where sub-metering is installed
- 9 of these have an experimental COP metering
- Beginning to gather data, analysis in late spring/early summer
- Developing better tools for calculating bulk fuel use



Economics for Vermont and Beyond

Heating Fuels for Vermont Homes

Source: US DOE, 2000 Census

Efficiency Vermont

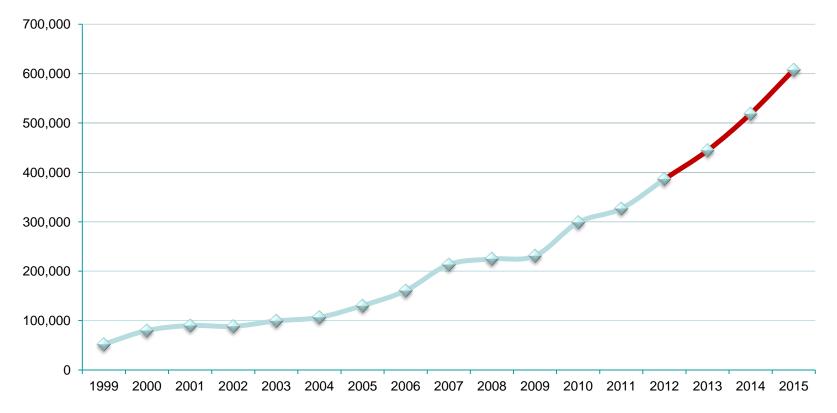
Potential Savings for Vermont

Fuel Displacement %	Space Heating (Gal Oil + LP)	Water Heating (Gal Oil + LP)	Cost Savings (\$/Year)
10%	9,250,000	1,850,000	\$20,000,000
20%	18,500,00	3,700,000	\$40,000,000
30%	27,750,000	5,550,000	\$60,000,000
40%	37,000,000	7,400,000	\$80,000,000
50%	46,250,000	9,250,000	\$100,000,000

Source: Hyper-Efficient Devices: Assessing the Fuel Displacement Potential in VT of Plug in Vehicles and Heat Pump Technology, Letendre 2013

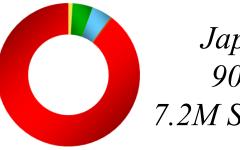
 Assuming fuel oil at \$3.99/gal, LP at \$2.99/gal, electricity at \$0.14615/kWh

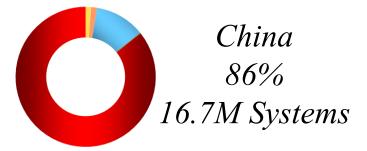
Theoretical Maximum Efficiency (COP)

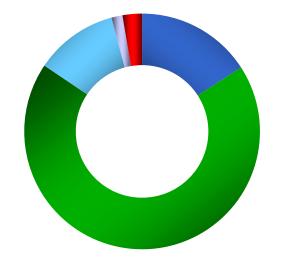

		Technology	
	Combustion	Resistive	Heat Pump
Present Peak Efficiency	0.95	1.0	2.0-4.0
Theoretical Maximum	1.0	1.0	6.0-17.0

- Combustion Technology is near maximum
- Heat Pumps still present huge potential

National Sales – Ductless Heat Pumps

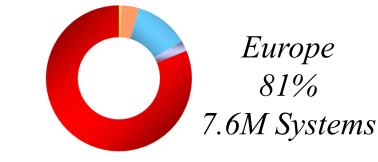

Ductless History and Forecast (U.S.)


Mitsubishi Electric "Market Data"



Worldwide Adoption

Japan 90% 7.2M Systems



USA 4% 0.4M Systems Unitary
Chillers
Moveble
Ductless

Window

Ductless is a small percent of the U.S. HVAC market but current building and energy usage trends indicate a large growth opportunity

Mitsubishi Electric "Market Data"

Efficiency Vermont

Vermont Market – Residential Splits

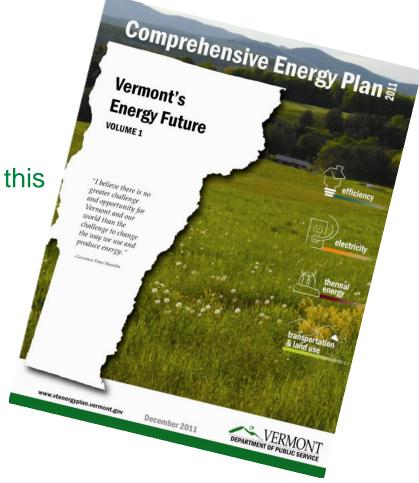
2011-2012 Sales:

- Close to 35% growth over previous year
- ~1720 Units

2012-2013 Sales:

- Major manufacturers saw over 40% growth
- ~2400 Units

See a trend?



Programs

VT Comprehensive Energy Plan

- 90% Renewable by 2050
- Renewable thermal energy?
- Biomass and electrical
- Heat pumps are a big piece of thi energy puzzle
- Programs being put in place to support this ambitious goal

Programs – CEED Cold Climate Heat Pump Program

What is it?

- Collaboration between Efficiency Vermont, Green Mountain Power, and Neighborworks of Western Vermont
- Incentive program for installing heat pumps in residential and commercial buildings
- Both ductless and central systems All air source
- Fossil fuel displacement

COLD-CLIMATE HEAT PUMP

Programs – CEED Cold Climate Heat Pumps Eligible Equipment

The world's first cold climate heat pump standard:

	DUCTLESS	CENTRAL	
Definition	A split-system heat pump unit that heats (or cools) directly into the room without ducts	A split-system heat pump unit connected to whole house distribution systems	
Capacity	100% of Nominal Capacity at 5°F	Maximum heating capacity at 5°F >50% rated capacity	
Heating Efficiency	COP >1.75 @5°F maximum capacity rating; HSPF > 9	COP >1.75 @5°F maximum capacity rating	
Cooling Efficiency	>20 SEER	>SEER 13	

Programs – CEED Cold Climate Heat Pumps Customer Eligibility

- Must be Legacy CVPS customer
- Must use fossil fuels
 - 300 gallons of fuel oil/kero
 - 450 gallons of LP
- Building must be weatherized
 - Avoid putting heat pumps in "leaky old farmhouses"

Programs – CEED Cold Climate Heat Pumps Customer Incentives

	DUCTLESS*	CENTRAL	
First Indoor Unit	\$750	\$500/ton	
Second Indoor Unit	\$500		
Integrated Controls	\$250	\$250	
Integrated DHW System		\$500	

Programs – Cold Climate Heat Pump Electric Heat Retrofit

What is it?

- EVT program directed at electric resistance displacement
- NOT a fuel switch program
- Targeting residential customers with primary electric heat

Programs – Cold Climate Heat Pump Electric Heat Retrofit

- Equipment Eligibility- Same as CEED CCHP (ductless only)
- Customer Eligibility- State-wide residential electric customers
 who use primarily electric resistance heat
- Incentives- \$1,000 for each home
- Official rollout...Today!

Lease Programs – GMP

- August 1, 2013 Rollout
- Only for GMP customers
- 600+ calls in the first few days
- So successful, had to stop taking new calls
- 447 homes have been visited
- Around 100 ductless units installed
- Plans to go State-wide

Lease Programs – Glow (www.glowheat.com)

- Monthly costs \$52-\$57, no money down
- Private 15 yr. lease arrangement
- Installing similar equipment to CEED/HiPER

Three unit sizes are available

Size (btu)	12,000	15,000	18,000
Monthly Cost*	\$51.95	\$53.95	\$56.95
Net Savings**	\$517	\$751	\$985

* Cost estimate for Mitsubishi FE Series heat pump lease (taxes not included)

**Estimating annual savings for an average 2500 sq ft home currently using 850 gallons of oil per year for heating

Efficiency Vermont

Programs- Other States

Maine

- \$600 unit, optional on-bill financing (7.75%)
- 1350 homes low income
- 660 homes open market
- Connecticut
- 3576 heat pumps low income
- 490 heat pumps open market
- Other Programs
- Massachusetts, New York, New Hampshire, Pacific Northwest

A Look Forward

Technology to Look Out For

Near Term

- 30+ SEER ductless
- Multi-zone cold climate optimized ductless
- Integrated water heating
- More customer options all around

Long Term

- Constantly improving efficiencies
- CO2 Refrigerant Systems
- No need for back-up systems (true replacement)

Other Upcoming Factors

- Most models forecast significant natural gas cost increases over the next decade
- Increased adoption of renewable generation is constantly improving the source factor (decrease in CO2)
- Demand response as AMI (smart grid) improves, possible time of use rates provide added support for electrification

Not Without Challenges

- Program support is challenging for fossil fuel displacement. Concerns about load/peak building
- Current source factors make carbon reduction minimal for much of the US
- Added strain on an aging electrical infrastructure
- Creates even more need for efficiency and renewables
- Installation and service contractor training
- Supply chain disruptions

Take Away

Challenges do exist, however...

- Technology is currently very economically compelling
- Future developments and technology potential make this even more compelling
- Opportunity for market growth is tremendous
- Provides important strategy for carbon reduction solution
- Programs being put in place are accelerating adoption

Let's Talk

