Materials Matter

quality over quantity

Oliver J. Curtis

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

"the vaster and richer your pool of creative resources, the more you are able to notice the chance when it happens, and seize it, and turn it into something productive, and something beautiful, and something meaningful."

-Maria Popova

characterize building materials as cellular solids

understanding materials: size, shape and density allows us to exploit their intrinsic properties

density

Lorna J. Gibson and Michael F. Ashby. "Cellular Solids: Structure and Properties" (1999).

low rigidity

isotropic: the same in all orientations an isotropic: directionally dependent

wood studs

Lorna J. Gibson and Michael F. Ashby. "Cellular Solids: Structure and Properties" (1999).

RCARCHITECTS

1 in 12 residents are...

1 in 12 residents are... lawyers

more than 22 times the national average...

openstreetmap.org

openstreetmap.org

scheduled neighborhood tree plantings - ESRI maps

RCARCHITECTS

Soil Survey - USDA Natural Resources Conservation Services

utility survey

site survey - Robert Curtis Architects

urban infill lot

Robert, architect

ROBERT CURTIS ARCHITECTS

Re

0

EI

1. accept transient conditions

2. avoid superficiality

3. embrace complexity

the behavior of the whole cannot be predicted by the behavior of any parts taken separately

-R. Buckminster Fuller

structural insulated panel

autoclaved aerated concrete

production process

surface of autoclaved aerated concrete

floating concrete

dry stacked AAC block retaining wall

dry stacked AAC block retaining wall

drywall waste

scalable versatility dimensional stability compatibility

thermal conductivity

Lorna J. Gibson and Michael F. Ashby. "Cellular Solids: Structure and Properties" (1999).

surface of cellular glass

termites, liability and exterior insulation

SPECIAL HAZARDS

1.	Do any of your operations involve the following?
	Use of cranes?
	Use of tower cranes
_	Length of booms: (# of ft)
	EIFS (Exterior Insulation and Finish Systems)?
	Demolition of structures (other than interior)?
	Structural alterations?
	Blasting?
	Foundation Repair?
	Shoring or underpinning?
	Pile driving?
	Caisson or cofferdam work?
	Other Special Hazards:
	Explain all "Yes" responses:

Special Hazard:

autoclaved aerated concrete block

Roger Lewis. Shaping the City

foundation exterior

seeking compatibility

autoclaved aerated concrete block

shear failure after thermal cycling

courtesy of Pittsburgh Corning internal document

natural hydraulic lime

applying lime stucco

cork

window frame section

window section

why have windows?

visible light transmittance

visible light transmittance

window areas

window areas

12:15 pm September 28th, 2014

12:30 pm October 20th, 2014

heads and threads

the full monty: fasteners, clips and bits

"It is impossible to observe everything, and so the observer has to give most of his attention to a selected field. But he should at the same time try to watch out for other things. Especially anything odd."

-William I.B. Beveridge

carbon steel is 464 times more thermally conductive than wood.

thermal analysis of siding nails and drywall screws using finite element mesh

Dane Christensen. "Thermal Impact of Fasteners in High-Performance Wood-Framed Walls" (2010).

thermal analysis of siding nails and drywall screws using finite element mesh

Dane Christensen. "Thermal Impact of Fasteners in High-Performance Wood-Framed Walls" (2010).

SIP nailing

conventional nailing

SIP nailing

conventional nailing

discovery is a creative act; it uncovers what already exists.

12

more information about this project may be found at: <u>robertcurtisarchitects.com/unfolding</u>

live solar production data available at: pvoutput.org