THC MAINE ANTIQUE REHAB (80% reduction) Sustainability Case Study "Optimization"

By: William Turner

Presentation at: BBBD2015, Efficiency Vermont, Burlington, VT.

Year-round home, 3,600 ft², 7,500 degree days

1000 Home Challenge Candidate

Copyright Turner Building Science & Design, LLC 2015 Jan 28, 2015

Agenda

- Take a brief tour
- Look at what we did in 1981, examine the poor results & why
- Look at fixes implemented since 1981
- "Almost There" : items to finally meet or exceed 1000 Home Challenge (OPTION B)

Why Is This Relevant?

I did it "wrong" the first time in 1982-1983

30 years ago Santa Cruz Presentation 1982

Now I hope to meet 1000 Home Challenge 2014-2015?

Learning Objectives

At the end of this session, participants will be able to:

- 1. <u>Describe what went wrong 30 years ago 1st attempt.</u>
- 2. List <u>5 principle needs</u> to be met for a successful D.E.R.
- 3. Identify 3 <u>IAQ issues</u> that can be addressed while improving the energy performance of a home.
- Recognize the <u>opportunity to simplify renovation</u> <u>strategies</u> though a comprehensive approach, good planning, & logical sequencing of work to be performed.

Step 1 of 5. Obvious Needs

Where did we begin?

Copyright Turner Building Science & Design, LLC 2015

Where we begin in 1981

No insulation, summer only use, mostly inaccessible dirt floor crawl space, interior wood finish, & squirrels. Two 30 ton rock fireplaces w. clay lined chimneys.

Most cedar shingles & asphalt roof shingles in OK shape

View Looking North

No Basement, Unknown Septic

Rock piers, hardpan soil, 2-4 foot frost wall north side Looking Southwest

General New England Climate Features

□ Cold & damp

✓ Supplemental heat for 8 (?) months

□ Hot and humid

✓ Dehumidification & cooling for 3 (?) months

Wind speed & snowfall vary

Portland Maine Climate Graph

Cold and Wet, or Hot and Wet, all year

Portland, Maine Dew Point Climate Graph

Portland, last 12 months, {source WeatherSpark.com Beta}

Copyright Turner Building Science & Design, LLC 2015

Mean Annual Earth Temperature Source: Virginia Tech

© TBS&D LLC, DJ&Co, 2014

Maine Extreme Climate Features

Range of weather

 ✓ 105° (1911, Bridgton) to -50° (2009, Black River)

✓ 21" rain in Great Flood of October, 1996

✓ 40" to 60" average annual rainfall

✓ zones, #6 & #7
 ✓ Aroostook County and the rest of Maine
 IECC Table 301.1

- Not unusual to be -20 ° F with a 30 MPH North Westerly wind, or
- 95° F and dry,
- or have a dew point of 74° F for many hours

Experience dew points above 55° 63% of the summer

Issue: Florida conditions with 50° ground temperatures

Copyright Turner Building Science & Design, LLC 2015

Without indoor humidity control, mold often grows on your organic stuff in Maine

What We Did, 1981:

Step 2 of 5. "Optimize Enclosure"

Owner: "Want Warm & Dry Highly Insulated Building with Good IAQ"

Decision: Gut from Interior & Reuse Most of Wood Finish

- Gutted inside & re-used wood, except
 bathrooms & 1 lead paint
 bedroom got sheetrock
- Added 2 by 2 to 2 by 4
- 6" FG batt &
 1" Thermax ™
- ¾" air space

No Effort to Air Seal Joints

Blown Cellulose in some unopened cavities

Initial Heat 1981: Wood Stoves & Oil Furnace Backup

DHW Coil in Wood Stove: Real Bad Idea

Restored Interior Finish: Wood & Matched Hard Pine

Attic: Foil VB Strips, 12" FG Batts, Big Mistake

In 1981, I listened to "don't make it too tight, a house has to breath", **very bad advice**.

Copyright Turner Building Science & Design, LLC 2015

House Was Cold & Drafty With (2) 60,000 BTU Stoves

Called Princeton Energy Partners, David Harrje & Gautam Dutt

1982 Attic Air Sealing: removed attic batts to fasten and caulk 6 mil poly on entire attic floor, reinstalled.

1982 Fix: Insulated 2 sides (250 ft²) of 30-ton exposed back of fireplace and rock chimney

1982 Windows: 33 French Style, 24 replaced with double hung thermal pane; all windows covered with triple track aluminum storms

Copyright Turner Building Science & Design, LLC 2015 **1982:** Installed 96 ft² of Vertical Sunspace (southwest exposure)

Copyright Turner Building Science & Design, LLC 2015

1982 DHW & Heat: 6 glazed 40 ft² plastic Sealed Air hot water panels flat mounted on roof with drain-back 100 gal. PVC soft tank & 80 gal. ducted heat pump backup, eliminated wood stove heat coil loop

1982 Crawl Space Fix: Added 3 " or 6" of XPS foam under the FG batts, sealed all joints

Complete Crawlspace Isolation

Turner Building Science & Design, LLC 2015

After Fixes How Did We Do (until 2012)?

6-7 cords of wood a year & 1 tank of oil, then switched to 200-400 gallons of propane & always evaporated lots of water on top of wood stoves

THC inspiration : 2012 Paradigm Shift

- Wood supplier stop supplying 3 cords a year
- 2. <u>I new enough now to fix house</u> to use much less energy
- Major flying squirrel infestation (15) in 1st floor ceiling cavity

IR Inside Attic: Identified Remaining Major Attic Bypasses (2011-12 winter)

Red & white indicate remaining air leaks inside cold attic at floor, mainly at junctions in framing.

Interstitial cavity between 1st and 2nd floor accessed for cellulose dense packing, insulation and air sealing

Copyright Turner Building Science & Design, LLC 2015

Interstitial floor space is where flying squirrels were living & commuting at perimeter of space

Copyright Turner Building Science & Design, LLC 2015

Air Sealing, Interstitial squirrel cavity between 1st & 2nd floors were accessed for cellulose dense packing

Interstitial cavity between floors accessed for cellulose dense packing (185 bales added including attic)

Installer prepped for coating rock chimney base with 2-part spray foam in 18" crawl space

Addressed Lead Paint On All Trim

New Chest Freezer, Replaced Old Upright

Replaced <u>ten</u> old T-12 four foot 32 watt lamps with new electronic ballasts with T-8 25 watt lamps (about ½ energy use). Winter use: 8-12 hours/day.

How many BTU's? Scales for THC wood weighing

IR Images Prior Final Dense Pack (Interior)

Missed dormer corners Air leaks at base of wall

Copyright Turner Building Science & Design, LLC 2015

IR Images Prior to Final Dense Pack (Exterior)

2nd Dense Pack: First floor walls dense packed into FG batts (25 bales) to air seal walls top & bottom as well as increase R value

Copyright Turner Building Science & Design, LLC 2015

2013 1st **Ductless Heat Pump**: one DHP serves about 2/3 of home, 1.5 ton

Outside Unit (3 ft above earth, out of snow, SW exposure)

Inside Unit & Low Wattage Ceiling Fan

Copyright Turner Building Science & Design, LLC 2015

Why Ductless Heat Pump

- IAQ Drying Function: no more mold on boots, Summer is humid for 2-3 months
- Temp Control: Can be cloudy or very sunny in winter, <u>Sunspace</u> requires very <u>controllable</u> auxiliary heat during heating months of the year, wood stove not easy to control or sun to plan for
- On extremely cold & windy winter days, can use wood stove if needed, & 1-2 hrs. of propane boiler operation during morning warm-up when needed
- DHP offers precise control for main living area, second floor stays at 68° F, with 1st at 72 ° F.

DHP Meter (March 2013 about 0.33 kWh per DD)

Copyright Turner Building Science & Design, LLC 2015

Now Very Even Temperature Distribution & not too dry in winter

(unless very windy, NW wind)

Now: Thermal Enclosure Insulation Levels, better comfort

Some Remaining Air Leakage Areas to Address

1st DHP Experience , prior to 2nd Dense Pack

- 1.5 ton system carries 2,000 Ft² of living space down to at least 20°F with no strong winds
- <u>Cost</u> similar to burning cord wood **above 15**°F?
- Drying function is wonderful on hot humid days in August (will drop 70% RH to 50% easy in a few hours)
- **Comfort Concern:** My wife reports missing ambiance <u>of</u> <u>radiant heat</u> of a hot wood stove on cloudy wintery days
- In 2014, we put in a 2nd DHP unit in the east end apartment (1/3 of home)

Current Ventilation Systems (IAQ)

- 2 kitchen exhaust hoods, also 2 bath fan exhausts on de-humidistats (all remote blowers)
- electric clothes driers ducted outdoors
- 1 roof-mounted solar hot air make up air panel on 25% timer 7 AM to 7 PM when 35°-55° outside
- 2 wood stoves without ducted OA, power vented boiler
- Added: 1 window-mounted 40 cfm supply fan for my bedroom during 30°-60° weather
- 30 year old double hung thermal pane windows

THC Actions Taken Summary

- Winter 2011-2012 blower door test & Infrared
- Cellulose dense pack interstitial space between 1st & 2nd floor
- Cellulose dense pack all slopped ceilings and 2nd floor walls
- Air sealed attic & add 2 feet of cellulose to 12 inch FG batts
- Add one DHP 1.5 ton unit
- Replace ten T-12, with Electronic Ballast T-8 25 watt 4 foot
- Replaced 14 cu ft freezer & old fridge in apartment
- Spray foam base of rock chimney 2 inches thick, replaced remaining 5 windows
- Rebuild solar hot water system with SS tank, HP back up
- Densepack 1st floor walls, add 2nd DHP

Blower Door Results & Fuel Use:

1982 prior to attic VB: not testable

10+ cords + 300 gal. oil

2011 prior to dense pack: 12 ACH₅₀ 6,675 CFM₅₀

6 cords + 400 gal. propane

3 cords (8,900 lbs) + 200 gal. propane

1 cord (1,249 lbs) 110 gal. propane + two DHP

after 1st dense pack: 7 ACH₅₀ 5,000 CFM₅₀

after additional dense pack 4,000 CFM₅₀

Reduced Emissions from Cord Wood Heating

Copyright Turner Building Science & Design, LLC 2015

IAQ No Central Air Filter Our "Sanctuary" Bedroom Areas, Medium speed = 125 CFM

son's bedroom

8 ACH

case needs vacuuming

hallway

4 air changes per hour

Courtesy: Turner Building Science & Design, LLC

Current Renewables 2014

- 1. 20 Ft² hot air panel make up air, 40 watt fan
- 2. Now 7 Kw PV panels
- 3. 144 Ft² hot water, 110 gal storage, & fan coil north hall
- 4. 96 Ft² passive sunspace (new glass)

Cost Summary:

- Org 1981-1982 Energy rehab \$10,000 20% of house cost
 - Dense Pack \$15,000 5% of house value
 - Two DHP \$ 6,000
 - **5** Windows **\$ 2,500**
 - Rebuild Solar HW \$ 10,000 *
 - HP DHWater \$ 1,500
 - Lead paint \$ 3,500 ½ cost
 - add 7 kW PV <u>\$ 20,500 *</u>

\$ 58,000 (20% of current value)

Annual Energy Use Compared to THC OPTION B (in kWh)

THC OPTION B INPUTS: Auburn-Lewistown, ME weather station (7,615 HDD base 65); 3,600 Ft² FFA; 54% electric heat

Copyright Turner Building Science & Design, LLC 2013

RH, Temperature and Carbon Dioxide

Copyright Turner Building Science & Design, LLC 2015

Thousand Home Challenge: 10 Steps

http://www.thousand homechallenge.com

- 1. Assess Needs, Site, Goals, & End Use of Space
- 2. Optimize Enclosures (reduce heat & cooling load)
- 3. Minimize Internal Loads (lights, appliances, electronics)
- 4. Provide Fresh Air
- 5. Control Humidity
- 6. Determine Cooling Needs
- 7. Integrate Hot Water with Other Loads
- 8. Determine Heating Needs
- 9. Integrate Renewables to Address Remaining Loads
- **10. Incorporate Verification, Feedback, & Evaluation**

Current Plan 2015:

(to meet THC: reduce 906 kW hours?)

- Fix air binding problem in ground mount Solar DHW \$ 100
- Address North side wall remaining air leakage
 \$ 200
- Also Consider: ??
 - LED bulbs vs. CFL \$ 250
 - Heat Pump Clothes Drier in Apt. \$1,600
 - Low Water Use Clothes Washer in Apt.
 \$ 700
 - Induction Unit 2 Burner?\$ 300
 - Condensing Boiler \$4,000
 - More Night Insulation?? Other Ideas?

Thank You Members of My Family

Copyright Turner Building Science & Design, LLC 2015

Questions? And Thank YOU to THC, Curry Caputo, & "Sustainable Structures" dense packers

Bill Turner

Turner Building Science & Design, LLC

bturner @turnerbuildingscience.com

www.turnerbuildingscience.com