

	T BE		Depte Sevenite		
Pun	np	Curve	S		
		KS Mod	lel 4009		
	W	ith an 8.0	00" impelle	r	
	Те	st Data a	t 1760 RP	М	
			Pump		System
Capa (GP	city M)	Head (Ft)	Efficiency (%)	BHP (HP)	Head (Ft)
0.0)0	59.55	-0.16	2.86	0
100.	.00	59.74	44.25	3.40	6.91
200.	.00	58.00	65.04	4.50	24.91
300.	.00	52.76	73.03	5.47	52.76
400.	.00	42.84	71.44	6.05	89.83
500.	.00	27.43	56.08	6.17	135.74

Chiller Plants – Things to Consider
 The flow rate of the chiller plant should be equal to or greater than the system flow rate Changes in the direction of flow in the cross over bridge can be used for chiller staging Control valve problems (or balancing) can result in artificially high flows, low temperature differentials, and the need to rerate chillers Watch out for the physical configuration of the cross over bridge, especially 6" and above. Make sure that chiller plant loop has sufficient volume to cover chiller minimum run times.
Boilers – Things to Consider
 The flow rate of the primary boiler plant does not need to be greater than the system flow rate
 Boiler plants and distribution loops can be designed with different temperature differentials to take advantage of smaller pipe sizes and mixing in the bridge
 The mixing in the bridge can be used to protect non-condensing boilers in a water source heat pump system.
Do your best work.

Ben	efits of	Variabl	le Spe _{Savings}	ed Pum	ping
г	he Pump Affinity Horsepowe	Laws are a serier (BHP), and S	ies of relations peed (N in uni	hips relating, Flow ts of R.P.M.)	r (Q), Head (H),
The F	Affinity La Flow Head Iorsepowe Reducing the spe Most systems of	aws Relat w: Q2 = 0 d: H2 = H er: BHP2 ed has a cubed operate at reduc	ting to Sp Q1 X (N2 H1 X (N2 = BHP1 effect on HP ced capacity m	2/N1) /N1)2 X (N2/N1) 1/2 Speed = 1/8 HI roost of their lives.	ge Are: 3
	Speed	Flow	Head	BHP	
	100%	100%	100%	100%	
	75%	75%	56%	42%	
	50%	50%	25%	12.5%	
	25%	25%	6%	1.2%	
					Do your best work.

Lago	BBBD Trease for the content of the c	NJA						
		Let's Ta	alk About Ef	ficiency				
	Flow (% of BEP)	100%	75%	50%	25%			
	Motor Load (% Full Load)	15 Hp (100%)	7 Hp (42%)	2 Hp (13%)	0.3 Hp (2%)			
	Motor Eff*	93%	92.6%	85%	78%			
	Drive Eff**	96.5%	93.5%	84.5%	44%			
	Calculating Informati # of oper Average Head, flo	Annual <u>Electrical</u> on above on motor (ating hours at each t cost of electricity (U w and efficiency of t	Cost to Operate a driver) and drive (VF flow (load) condition SA average is \$0.11 he pump (wet end) -	a Pump – need to D) – efficiency at var (load profile – heatin per kW) assume constant wit	know: ious loads g or cooling) th VFD			
Line to	Water kW = H (F חף	⁻ t) x Q (Usgpm) x SO x ηΜ x ηD x 3960	6 "k • •	 "Knowns" 500 USGPM @ 81' (100% load or flow) Pump efficiency @ H/Q "design" = 74% Motor efficiency @ design = 93% Drive efficiency @ design = 96.5% Assume SG 1.0 				
	0.745 x 0.74	x 0.93 x 0.96.5 x 39	60					
					a co			
					Do your pest work.			

BBD

Energy Savings Calculator – Chilled Water CW Load Profile and 8000 Hours, \$0.11 / kWh

	Chilled Water - Constant Speed Pumps, Inrottling Valves (no VFD s)									
% Load Conditions ARI Standards	% Load	GPM (USGPM)	Head (ft)	Eff Pump	Eff Motor	Drive NIC	Wire to water eff	P1 to P4 Hp	Annual KW	Annual Cost
1%	100%	500	80.65	74%	93%	100%	69%	14.76	1181	\$130
42%	75%	375	87.51	70%	91%	100%	64%	13.01	43711	\$4,808
45%	50%	250	92.75	59%	78%	100%	46%	12.72	45805	\$5,039
12%	25%	125	95.97	37%	62%	100%	23%	13.21	12677	\$1,395
								Totals	103375	\$11.371.25

			Chille	d Water - V	ariable Spee	ed Pumps				
% Load Conditions ARI Standards	% Load	GPM (USGPM)	Head (ft)	Pump Eff	Motor Eff	Drive Eff	Wire to water eff	P1 to P4 Hp	Annual KW	Annual Cost
1%	100%	500	80.7	74%	93%	97%	66%	15.34	1227	\$135
42%	75%	375	45.4	74%	93%	94%	64%	6.71	22546	\$2,480
45%	50%	250	20.2	74%	85%	85%	53%	2.40	8638	\$950
12%	25%	125	5	74%	78%	44%	25%	0.62	597	\$66
								Totals	33008	\$3,630,88

	Ene Heat	rgy ទ ing Loa	Savir ad Pro	i gs C file and	alcu d 6000	l lator Hours,	- He \$0.11	ating / kWh)	
					_					
% Load Conditions EU Standards	% Load	GPM (USGPM)	Head (ft)	Eff Pump	Eff Motor	Drive NIC	Wire to water eff	P1 to P4 Hp	Annual KW	Annual Cos
6%	100%	500	80.65	74%	93%	100%	69%	14.76	5315	\$585
15%	75%	375	87.51	70%	91%	100%	64%	13.01	11708	\$1,288
35%	50%	250	92.75	59%	78%	100%	46%	12.72	26720	\$2,939
44%	25%	125	95.97	37%	62%	100%	23%	13.21	34863	\$3,835
								Totals	78606	\$8,646.67
			He	ating - Varia	able Speed I	Pumps				
% Load Conditions EU Standards	% Load	GPM (USGPM)	Head (ft)	Pump Eff	Motor Eff	Drive Eff	Wire to water eff	P1 to P4 Hp	Annual KW	Annual Cos
6%	100%	500	80.7	74%	93%	97%	66%	15.34	5523	\$608
15%	75%	375	45.4	74%	93%	94%	64%	6.71	6039	\$664
35%	50%	250	20.2	74%	85%	85%	53%	2.40	5039	\$554
44%	25%	125	5	74%	78%	44%	25%	0.62	1641	\$180
								Totals	18242	\$2,006.60
									1	

BBD

6.5.4 Hydronic System Design and Control.

6.5.4.1 Hydronic Variable Flow Systems. HVAC pumping systems having a total pump system power exceed-ing 10 hp that include control valves designed to modulate or step open and close as a function of load shall be designed for variable fluid flow and shall be capable of reducing pump flow rates to 50% or less of the design flow rate. Individual chilled water pumps serving variable flow systems having motors exceeding 5 hp shall have controls and/or devices (such as variable speed control) that will result in pump motor *demand* of no more than 30% of design wattage at 50% of design water flow. The *controls* or devices shall be controlled as a function of desired flow or to maintain a minimum required differential pressure. Differential pressure shall be measured at or near the most remote heat exchanger or the heat exchanger requiring the greatest differential pressure. The differential pressure setpoint shall be no more than 110% of that required to achieve design flow through the heat exchanger. Where differential pressure control is used to comply with this section and DDC controls are used the setpoint shall be reset downward based on valve positions until one valve is nearly wide open.

Exceptions:

- a. Systems where the minimum flow is less than the minimum flow required by the equipment manufacturer for the proper operation of equipment served by the system, such as chillers, and where total pump system power is 75 hp or less.
- b. Systems that include no more than three control valves.

6.4.2.2 Pump Head. Pump differential pressure (head) for the purpose of sizing pumps shall be determined in accordance with *generally accepted engineering standards* and handbooks acceptable to the *adopting authority*. The pressure drop through each device and pipe segment in the *critical circuit* at *design conditions* shall be calculated.

6.4.3 Controls

6.4.3.1 Zone Thermostatic Controls

6.4.3.1.1 General. The supply of heating and cooling energy to each zone shall be individually controlled by *ther*mostatic controls responding to temperature within the zone. For the purposes of Section 6.4.3.1, a *dwelling unit* shall be permitted to be considered a single zone.

Reducing pump flow by 50% > 10 Hp on systems with valves

30% wattage at 50% design flow descriptor

 Δ P sensor location

LoadMatch systems are NOT required to have variable speed pumping as they have no more than 3 control valves

BBD

6.5.4.4.2 Hydronic heat pumps and water-cooled unitary air-conditioners having a total *pump system power* exceeding 5 hp shall have *controls* and/or devices (such as variable speed control) that will result in pump motor *demand* of no more than 30% of design wattage at 50% of design water flow.

6.5.4.5 Pipe Sizing. All chilled-water and condenserwater piping shall be designed such that the design flow rate in each pipe segment shall not exceed the values listed in Table 6.5.4.5 for the appropriate total annual hours of operation. Pipe size selections for *systems* that operate under variable flow conditions (e.g., modulating two-way control valves at coils) and that contain variable-speed pump motors are allowed to be made from the "Variable Flow/Variable Speed" columns. All others shall be made from the "Other" columns.

Exceptions:

- a. Design flow rates exceeding the values in Table 6.5.4.5 are allowed in specific sections of pipe if the pipe in question is not in the *critical circuit* at *design conditions* and is not predicted to be in the *critical circuit* during more than 30% of operating hours.
- b. Piping systems that have equivalent or lower total pressure drop than the same system constructed with standard weight steel pipe with piping and fittings sized per Table 6.5.4.5.

← 30% wattage at 50% design flow descri Higher velocities (smaller pipes) with VFD! ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	30% wattage at 50% design flow descrip Higher velocities (smaller pipes) with VFD! TABLE 6.5.4.5 Piping System Design Maximum Flow Rate in GPM TABLE 6.5.4.5 Piping System Design Maximum Flow Rate in GPM Star, is. Other Variable Speed Other Variable Flow
Higher velocities (smaller pipes) with VFD! Line of the second sec	Higher velocities (smaller pipes) with VFD!
Higher velocities (smaller pipes) with VFD! Vertable Spectro Design Maximum Flow Rate in GPM TABLE 6.5.4.5 Piping System Design Maximum Flow Rate in GPM Operating Hours/Year >2000 and ≤ 4400 Hours/Year >4400 H Variable Flow >4400 H Variable Flow >4400 H 2 1/2 180 85 130 64 2 1/2 180 85 130 64 3 180 85 130 64 3 180 85 130 64 3 180 65 130 64 3 180 65 130 64 3 180 63 6400 100 5 130 3 </th <th>Higher velocities (smaller pipes) with VFD!</th>	Higher velocities (smaller pipes) with VFD!
Higher velocities (smaller pipes) with VFD! Junt 100 Ju	Higher velocities (smaller pipes) with VFD!
TABLE 6.5.4.5 Piping System Design Maximum Flow Rate in GPM Operating Henry/Year >2000 and < 6400 Henry/Year	TABLE 6.5.4.5 Piping System Design Maximum Flow Rate in GPM TABLE 6.5.4.5 Piping System Design Maximum Flow Rate in GPM stryYear <2000 Hears/Year >2000 and < 4400 Hears/Year >4400 Hear Star, is. Other Variable Flem/
TABLE 6.5.4.5 Piping System Design Maximum Flow Rate in GPM Operating Hours/Year 52000 and < 4400 Hours/Year	TABLE 6.5.4.5 Piping System Design Maximum Flow Rate in GPM stryYear <2000 HearyYear >2000 and < 4400 HearyYear >4400 Heary Star, is. Other Variable Flow/ Variable Speed Other Variable Flow/ Variable Speed Other V
TABLE 6.5.4.5 Piping System Design Maximum Flow Rate in GPM Operating Hours/Year <2000 Hours/Year	TABLE 6.5.4.5 Piping System Design Maximum Flow Rate in GPM str.Vier <2000 Hear-Vier >2000 and < 4400 Hear-Vier >4400 Hear Star, is. Other Variable Flow/ Variable Speed Other Variable Flow/ Variable Speed Other V
Vertable 5.5.5 Vertable Design Maximum Flow Rate in GPM Operating Hears/Year <2000 Hears/Year	V TABLE 6.5.4.5 Piping System Design Maximum Flow Rate in GPM an Year <2000 Hears/Year >2000 and < 440 Hears/Year >4400 Hear Stor, is. Other Variable Flow/ Variable Speed Other Variable Flow/ Variable Speed
Operating Hears/View <2000 Hears/View	reache value – eping aystem ceregin matantain room rate at orwe un Vier – 2000 Bear-View – 2200 and 4400 Bear-Vier – 2400 Bear Ster, is. Other Variable Flow/ Other Variable Flow/ Variable Speed
Nominal Pipe Ster, in. Other Variable Piper/ Variable Speed Other Variable Piper/ Variable Speed Other 2 1/2 120 180 85 130 68 3 180 270 140 210 110 4 350 530 260 400 210 5 410 620 310 470 250	Size, in. Other Variable Flow/ Other Variable Flow/ Other V Variable Speed Variable Speed V
2 1/2 120 180 85 130 68 3 180 270 140 210 110 4 350 530 260 400 210 5 410 620 310 470 250	
3 180 270 140 210 110 4 350 530 260 400 210 5 410 620 310 470 250 6 70 100 100 100 100	120 180 85 130 68
4 350 530 260 400 210 5 410 620 310 470 250	180 270 140 210 110
5 410 620 310 470 250	350 530 260 400 210
C 710 1100 F70 200 110	410 620 310 470 250
6 740 1100 570 860 440	740 1100 570 860 440
8 1200 1800 900 1400 700	1200 1800 900 1400 700
10 1800 2700 1300 2000 1000	1800 2700 1300 2000 1000
12 2500 3800 1900 2900 1500	2500 3800 1900 2900 1500
Maximum Velocity for Pipes 8.5 fps 13.0 fps 6.5 fps 9.5 fps 5.0 fps 5.0 fps	
10 1800 2700 1300 2000 1000 12 2500 3800 1900 2800 1500 Maximum Velocity for Pipes 8.5 fps 13.0 fps 6.5 fps 9.5 fps 5.0 fps	1800 2700 1300 2000 1000 2500 3800 1900 2900 1500

Federal Register/	Vol. 76, No. 113/Monday, June 13, 2	011/Proposed Rules	34193	
rashington, DC 20585-0121. Phone: 2021 540-5945. Phone submit con- grand paper original. • Hand Dullwey/Gaussier: Ms. Brenda Warach, U.S. Dopartment of Energy. utiling Technologies Program, 6th oce, 950 I Tailant Plaza, SW. Yashington, DC 20024. Phone: (2021) 62-2945. Phone submit cone signed aper original. • Instructions: All submissions	Sections 6314 and 6315 concern test procedures and labeling, respectively, in these sections, in combinations with section 6316(a), give DDE ambody to orbiblish test procedures and to preserve a labeling rule for pumps. Based on the information board for weaking in respective bits Request for whether to indicate a rulemaking to	also used the 2006 MBCS di industrial energy uso usa so be 126,100 million kWh or site energy uso. Part of the r- lower estimate in this shady authors listed a lower value petroloum reliaing industry the other three studies. An earlier study conduct "United States Industrial IE Systems Ornorthmilies Asse	ata. The total atimated to 0.43 quads reason for the is that the : for the than any of ed for IXOE, ectric Motor resonant.	DOE? Regulation Due this fall – 5 years to comply Sections 6314 and 6315 concern test procedures and labeling, respectively,
covered must include the approxy name of dotast manner. Dockstr 107 access to the dockst to an inducing send documents or normesta nextwol, visit the U.S. sequences of the sequence of the sequence partners of 10 representation of the sequence 20 17 binder Fixes, NN, Sainto 600, relativity, NN, 20 2000, 20 20 300–2000 for the sequence of the sequence of the second sequence of the sequence of the second sequence of the sequence of the second second sequence of the second seco	multiplication of the procedure, energy conservation standard, or italiability requirement for commercial and standard of the standard of the standard commercial standard of the standard commercial standard standard standard commercial standard standard standard DECK Intersection specific types of "industrial explorations" and "screened equipment," including electric motors equipment," including electric motors equipment, "industrial electric motors equipment," including electric motors industrial and environmental industrial and environmental industrial and environmental industrial and environmental for the standard commercial approximation of the standard event that can environ the standard standard event that can environ the standard standard standard event that can environ the standard standard standard standard event that can environ the standard standard standard standard standard event that can environ the standard sta	December, 2002, " + settinuity rector, This energy use efficiency of the setting includes agriculture, oil and extraction, water and water more of the setting. Standboll on and 390 were included in th The site concey use estimate year 1994 was 342,500 mill 0,49 quads able eestry use. Bits the zenergy use for each and year. TARE 2.1—INCUSTRAR ELECTROIT USE BY	d energy dentry dentry ga water, or adouttial water, or adouttial water, or adouttial water, or adouttial outpillong 21 energy d for the ion kWh or Table 2.1 .industry . SECTOR PLAPS	for covered equipment. The provisions in these sections, in combination with section 6316(a), give DOE authority to establish test procedures and to prescribe a labeling rule for pumps. Based on the information DOE receives in response to this Request for Information, DOE will determine
metric Tampi (12) The parameter of the second s	by egenerativity (2160 equals memory). BMC and the second	Industry Ind		whether to initiate a rulemaking to establish a test procedure, energy conservation standard, or labeling requirement for commercial and industrial pumps. 2. Evaluation of Pumps as Covered Equipment EPCA lists several specific types of "industrial equipment" as "covered equipment," including electric motors and pumps. (42 U.S.C. 6311(1)) DOE estimates that commercial, industrial, and agricultural pumps consume approximately 0.63 quads per year of electricity and that technologies exist that can reduce this consumption by approximately 0.190 quads annually. DOE used industry and census data to calculate the average establishment energy use for pumps.

In Scope?	Pump Type	ANSI/HI Nomenclature
Yes	End Suction Frame Mounted/Own Bearings	OH0, OH1
Yes	End Suction Close Coupled	OH7
Yes	Inline	OH3, OH4, OH5
Yes	Radial Split (Multistage) Vertical	VS8
Yes	Submersible Vertical Turbine (Multistage)	VSO
Maybe	Double Suction	BB1, OH4 double suction
Maybe	Axially Split	BB1 (2 stage), BB3
Maybe	Radial Split - Horizontal	BB2 (2 stage), BB4
Maybe	Radial Split – Vertical (Immersible)	N/A
Maybe	Vertical Turbine	VS1, VS2
Maybe	Circulators	CP1, CP2, CP3
	Extended Product – Pump/Motor/Drive • Probable regulation evaluates variable Pump/Motor	e load line to water efficiency

