

Solar Fire Investigation Analysis Concentrated Solar Reflective Irradiance from Low-E Glass

Presented by Curt M. Freedman, MSEM, PE, CEM, CEA, LEED[®] AP

Adjunct Professor of Alternative Energy Western New England University, Springfield, MA

Email: CMF.Freedman@gmail.com

[Above Photos: 94 Charles Street, Whitman, MA – DOL: 1/13/2015]

Better Buildings by Design Winter Conference – Burlington, Vermont

Solar Fire 108 West Quincy Street, Somerville, MA (1/6/2018)

104/108 West Quincy Street, Somerville, MA (Maximum temperature observed: 480°F)

110 & 116 Blue Hills Road, Amherst, MA DOL: 7/8/2018

110 & 116 Blue Hills Road, Amherst, MA DOL: 7/8/2018

>Q] Why is this happening?

A] A Perfect Storm on a Sunny Day

Energy Star, International Energy Code

https://www.energystar.gov/products/building_products/residential_windows_doors_and_skylights/key_product_criteria

WINDOWS				
CLIMATE ZONE	U- FACTOR ¹	SHGC ²		
Northern	≤0.27	Any	Prescriptive	
	=0.28	≥0.32	Equivalent Energy Performance	
	=0.29	≥0.37		
	=0.30	≥0.42		
North Central	≤ 0.30	≤ 0.40		
South Central	≤ 0.30	≤ 0.25		
Southern	≤ 0.40	≤ 0.25		

SKYLIGHTS						
CLIMATE ZONE	U- FACTOR ¹	SHGC ²				
Northern	≤ 0.50	Any				
North Central	≤ 0.53	≤ 0.35				
South Central	≤ 0.53	≤ 0.28				
Southern	≤ 0.60	≤ 0.28				

Air Leakage ≤ 0.3 cfm/ft2

¹ Btu/h ft2.°F ² Solar Heat Gain Coefficient

Our Solar System

Our Solar System

Solar Constant

 $P = \varepsilon \sigma A T^{4}$ $\varepsilon = 1.0$ (Emissivity)

Stefen Boltzmann Constant: $\sigma = 5.670367(13) \times 10^{-8} \text{ W/(m^2K^4)}$ In US customary units: $\sigma \approx 1.714 \times 10^{-9} \text{ BTU/(hr ft^2 °R^4)}$

A = Surface area of Sun = $4 \pi R^2 R_{sun} = 695,700,000 m$ Effective Temperature of Photosphere = 5772 °K

 $P = 1.0 \bullet [5.67036713 \text{ x } 10^{-8} \text{ W}/(\text{m}^2\text{K}^4)] \bullet 4 \pi \bullet$ [6.957x10⁸m]²• (5772°K)⁴

$> P = 3.9512 \text{ x } 10^{26} \text{ watts}$

Perihelion: 147,100,000 km (91,420,479 mi) Aphelion: 152,100,000 km (94,525,254 mi)

Solar Constant

- R= Average Sun to earth distance
- $P = 3.9512 \text{ x } 10^{26} \text{ watts}$
- $I = P/A; A = 4\pi R^2$
- > Perihelion: 147,100,000 km (91,420,479 mi) $I_{max} = 1419 \text{ W/m}^2$

> Aphelion: 152,100,000 km (94,525,254 mi)

 $I_{min} = 1327 \text{ W/m}^2$

Forensic Solar Fire Investigation Analysis - 2/5/2020

12

The Earth Diameter: 7,926 miles (12,756 km) Rotating at 15°/hr; 1,040 miles/hr (at Equator)

Longitude, Latitude

Solar Insolation

Pyranometer

Units: (W/m²) or (Btu/(hr-ft²)

Direct & Diffuse Insolation

Solar Insolation on Surfaces

On Tilted Surface

On Horizontal Surface

Summer -North Hemisphere Winter - South Hemisphere

March & September Equinox

Winter - North Hemisphere Summer – South Hemisphere

ASHRAE Clear Sky Equations

ASHRAE Clear Sky Equations

Reference History:

ASHRAE, Fundamentals Handbook, Chapter 29, 1997.

Solar Thermal Engineering, Lunde, 1980.

Solar Radiation of Surfaces on Clear Days," ASHRAE 1963

Solar Insolation Parameters

 $[1.0 \text{ Btu/(h-ft}^2) = 3.155 \text{ w/m}^2]$

							DECLINA-	
			А	Α'	В	С	TION	EQT
MONTH	DATE	DAY NO.	(BTU/(HR-SF)	(W/SM)	(Dim Less)	(Dim Less)	(DEG)	(MIN)
JANUARY	21	21	390	1230	0.142	0.058	-19.76	-11.26
FEBRUARY	21	52	385	1215	0.144	0.060	-10.73	-14.19
MARCH	21	80	376	1186	0.156	0.071	0.00	-7.84
APRIL	21	111	360	1136	0.180	0.097	11.78	1.19
MAY	21	141	350	1104	0.196	0.121	20.17	3.54
JUNE	21	172	345	1088	0.205	0.134	23.45	-1.45
JULY	21	202	344	1085	0.207	0.136	20.57	- <mark>6.0</mark> 5
AUGUST	21	233	351	1107	0.201	0.122	12.13	-2.80
SEPTEMBER	21	264	365	1152	0.177	0.092	0.40	7.71
OCTOBER	21	294	378	1193	0.160	0.073	-11.09	15.83
NOVEMBER	21	325	387	1221	0.149	0.063	-19.97	13.43
DECEMBER	21	355	391	1234	0.142	0.057	-23.43	1.38

I_{Total} = I_{Beam} + I_{Ground} + I_{Diffuse}

Forensic Solar Fire Investigation Analysis - 2/5/2020

..........

The Sun and the Rotating Earth

Insolation on Flat Plane

Atmospheric Effects $I_{DN} = A \exp \left[-P/Po \cdot B/cos(\theta_z)\right]$

$P/Po = exp[-0.0000361 \cdot Altitude(ft)]$

Tropopause altitude is reduced in Northern Winter

Tropopause Altitude

Characteristics of tropopause parameters as observed with GPS radio occultation, Rieckh et al., 2014

Figure 6. Mean altitude (km) of first tropopauses for January and July from 2007 to 2013. White circles denote areas of exceptionally low (solid) and high (dashed) tropopauses within the respective latitude band.

Figure 6. Mean altitude (km) of first tropopauses for January and July from 2007 to 2013. White circles denote areas of exceptionally low (solid) and high (dashed) tropopauses within the respective latitude band.

Solar Insolation Atmospheric Filtering

Troposphere, Tropopause: Elevation & Temperature Cold Winter Day (1/6/2018 – Chatham, MA)

Atmospheric Mass & The Cosine Effect

Air Mass (AM) Determination Using Cosine Law & Quadratic Formula substitution

Cosine Law:

 $(R+H)^{2} = Z^{2} + R^{2} - 2 \cdot Z \cdot R \cdot Cos \{180 - \theta_{z}\}$ Note: Cos {180 - θ_{z} } = - Cos { θ_{z} } $0 = Z^{2} + Z \cdot 2 \cdot R \cdot Cos {<math>\theta_{z}$ } - (R+H)^{2} + R^{2}

Solving for Z using Quadratic Formula:

 $\frac{-b+-[b^2-4ac]^{(1/2)}}{2a}$

 $Z = -2 \bullet R \bullet Cos \{\theta_z\} + [(2 \bullet R \bullet Cos \{\theta_z\})^2 - 4(1)(-(R+H)^2 + R^2)]^{(1/2)}$

Simplifying:

 $Z = -R \cdot Cos \{\theta_z\} + [(R \cdot Cos \{\theta_z\})^2 + ((2HR + H^2)]^{(1/2)}]$

2

Air mass = $\mathbf{A}\mathbf{M} = \mathbf{Z}/\mathbf{H}$: $\mathbf{Z}/\mathbf{H} = -\underline{\mathbf{R}} \cdot \operatorname{Cos}\{\theta_z\} + \left[(\underline{\mathbf{R}} \cdot \operatorname{Cos}\{\theta_z\})^2 + ((2\mathbf{H}\mathbf{R} + \mathbf{H}^2)) \right]^{(1/2)}$ H H

Z/H = [(R/H•Cos{ θ_z })² + 2R/H + 1] ^(1/2) - R/H•Cos{ θ_z }

Insolation at low α 50%-100% more

Solar Equations Horizontal Surface

Solar Azimuth (ψ) {degrees away from south}

 $\cos(\psi) = [\sin(\alpha) \sin(\Phi) - \sin(\delta)]$ $[\cos(\alpha) \cos(\Phi)]$

Zenith Angle (θ_z): {Incident Angle}

 $\cos(\theta_z) = \sin(\alpha) = \cos(\Phi)\cos(\delta)\cos(\omega) + \sin(\Phi)\sin(\delta)$

 $H_{global} = I_{DN} sin(\alpha) + CI_{DN}$

Solar Equations on a Tilted Surface

Tilted Surface [γ] from south (True South Only): $\cos(\theta) = \cos(\Phi - \beta)\cos(\delta)\cos(\omega) + \sin(\Phi - \beta)\sin(\delta)$

~Sunrise, Sunset: $\pm \cos(\omega_s) = -\tan(\Phi - \beta)\tan(\delta)$ $\pm 24/360 \times \arccos[-\tan(\Phi - \beta)\tan(\delta)]$

Tilted Surface [γ] from south (+ $\gamma \sim$ West, - $\gamma \sim$ East) Cos(θ) = cos(α)cos(ψ - γ)sin(β) +sin(α)cos(β)

@ 40° North Latitude

@ 40° North Latitude

Answer 1) Determination of solar insolation ["Solar_Sample_Calc_Sensitivity.EXE"]:

<u>A</u>	B	<u>c</u>			
391.0	0.142	0.057			
Elev		0.0	FT (Above	Sea Level	
ρ (Reflectivity):		0.00	[Unitless]		
Φ		40.000	Deg	0.698	Rad
Day Number		355			
γ		10.0	Deg	0.175	Rad
β		90.00	Deg	1.571	Rad
Solar Time		14.000	hr		
ω [Hour angle]		30.00	Degrees	0.5236	Radians
δ [Declination An	gle]	-23.429	Deg	-0.4089	Rad
COS(0z)		0.353			
(θz)		69.32	Degrees	1.210	Radians
α [Solar Altitude]		20.68	Degrees	0.361	Radians
Cos (y)		0.87151			
Ψ		29.365	Degrees	0.5125	Radians
			_		
COS(θ)		0.88264177			
(0)		28.04	Degrees	0.4893	Rad

			_	
Temp:		30.0	°F	
P/Po		1.000		
AM (Exact)		1.054		
DN		336.6	Btu/(hr-sf)	
ky Refraction		2.9%		
ky Refraction		9.6	Btu/(hr-sf	
Ground Reflection		0.0%		
Fround Reflection		0.00	Btu/(hr-sf	
	Total Diff	9.59	Btu/(hr-sf	
	Direct	297.1	Btu/(hr-sf	
	Total:	306.7	Btu/(hr-	sf)
	1	Btu/(hr-sf)	=	3.15464
	Total:	967.6	Watt/m	2

Typical Insulated Glass Unit (IGU)

Window Performance

SOLAR ENERGY VISIBLE LENT

Window Reflected Sunlight

Solar Glare Reflection from Window

Angle of Reflection = Angle of Inflection

Aerial View

[Angle of Reflection = Angle of Inflection]

September-March

For Sun Reflecting onto the Ground (Isometric View) $I_{Reflect} = I_{DN} x$ (Concentrating Factor)

For sunlight reflection onto the ground:

For Sun Reflecting onto the Wall (Isometric View) $I_{Reflect} = I_{DN} x$ (Concentrating Factor)

For Sunlight reflecting on the wall:

 $JJ \cdot \cos(\psi - \gamma_1) \ge D$

$$\begin{split} & \text{Tan}(\psi\text{-}\gamma_1) = Z/D; \ Z = D\text{-}\text{Tan}(\psi\text{-}\gamma_1) \\ & J^2 = Z^2 + D^2 \\ & \text{Tan}(\alpha) = Y/J; \ Y = J\text{-}\text{Tan}(\alpha) \\ & \text{Cos}(\psi\text{-}\gamma_1) = D/J \\ & G^2 = Y^2 + J^2 \\ & \text{Cos}(\alpha) = J/G \end{split}$$

Ishingle = IR•Cos(
$$\alpha$$
- μ) •Cos(ψ - γ_1 -{ γ_2 - γ_1 })

Incident Angle Factor = $[\cos(\alpha - \mu) \cdot \cos(\psi - \gamma_1 - \{\gamma_2 - \gamma_1\})]$

Incident Angle = ACos[Incident Angle Factor]

Forensic Solar Fire Investigation Analysis - 2/5/2020

49

3-D Model

Excel Analysis

Sun Factor	7.0				
IR=	2,147.12	Btu/(hr-sf)			
$Tan(\psi - \gamma) =$	Z/D; Z=D•Tan	(ψ- γ)			
D=	30	Ft			
ψ	29.365	Degrees	0.513	Radians	
Y	10.00	Deg	0.175	Rad	
Z	10.54	Ft			
$\mathbf{J}^2 = \mathbf{Z}^2 + \mathbf{D}$	2				
J =	31.8	Ft			
$Tan(\alpha) = Y$	/J; $Y = J \cdot Tan(\alpha)$)			
α =	20.68	Degrees	0.36	Radians	
Y =	12.00	Ft			
Cos(ψ- 2 γ)	= D/J				
$G^2 = Y^2 + J$	²				
G=	33.99	Ft			
	0.93557071				
	0.93557071				
$Cos(\alpha) = J/c$	G				

Ishingle = IR	• Cos(α- μ) •Cos(ψ	γ-2γ1-{ γ2- γ1})					
μ=	7.0	Degrees	0.122	Radians				
γ ₂ =	10.0	Degrees	0.175	Radians				
γ1 =	10.0	Degrees	0.175	Radians				
Vo- V1	0.0	Degrees	0.000	Padianc				
12-11	0.0	Degrees	0.000	Radians				
Incident Ang	Incident Angle Factor = $[Cos(\alpha - \mu) \cdot Cos(\psi - 2\gamma_1 - \{\gamma_2 - \gamma_1\})]$							
Incident Ang	le Factor =	0.95868						
Incident Angle = ACOS[Incident Angle Factor]								
Incident Ang	le =	0.288457589	Radians	16.527	Degrees			
Ishingle = IR	•Cos(Incident An	gle)						
Ishingle =	2,058.4	Btu/(hr-sf)						

Sensitivity Analysis Using Analytic Models

Sunbeam Height Above Ground v. Z [ϕ =42°]

 $\gamma = 0^{\circ}$

 $\gamma = 25^{\circ}$

Shingle $Cos(\theta)$ v. Solar Time [$\phi=42^\circ$]

 $\gamma = 0^{\circ}$ $\gamma = 25^{\circ}$ D= 20 Feet 30 Feet D= 20 Feet 30 Feet H_T= 0.0 Degrees γ = 25.0 Degrees γ = Time End 16.0 hr Time Star Time End: 16.0 hr. Time Start 9.0 ht Shingle $Cos(\theta)$ v. Solar Time Shingle $Cos(\theta)$ v. Solar Time 1.00 1.00 0.95 0.95 0.90 0.90 0.85 0.85 0.80 0.80 0.75 0.75 0.70 0.70 C 0.65 C 0.65 0.60 0 _{0.55} 0.60 0 0.55 s 0.50 S 0.50 $\overline{}$ 0.45 θ θ θ 0.45 0.40 Ű 0.40 0.35 0.35 0.30 0.30 0.25 0.25 0.20 0.20 0.15 0.15 0.10 0.10 0.05 0.05 0.00 0.00 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 Solar Time (hr) Solar Time (hr) --Dec -Jan --Feb --March --Jan 4th →Dec →Jan →Feb →March →Jan 4th

Shingle Incident Angle v. Solar Time [ϕ =42°]

 $\gamma = 0^{\circ}$ $\gamma = 25^{\circ}$ D= 20 Feet 30 Feet D= 20 Feet $H_{T}=$ 30 Feet 25.0 Degrees $\gamma =$ γ = 0.0 Degrees 9.0 hr. 16.0 hr. Time Start: Time End: Time End: Time Start 16.0 hr Shingle Incident Angle v. Solar Time Shingle Incident Angle v. Solar Time 90 75 T 85 Т n 70 80 n С С 65 75 i $\overline{}$ D i D 60 d 70 е d е е 65 g е 55 n g r 60 n t е 50 t 55 е е 45 А 50 е s А n s 45 n g 40 g Т 35 Т 35 е 30 е 30 25 25 20 20 15 15 10 10 5 5 0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 9.0 0 Solar Time (hr) 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 Solar Time (hr) --Dec -Jan --Feb --March --Jan 4th --Dec -Jan --Feb --March --Jan 4th

Sunbeam Linear Velocity [Velocity Between Two Points]

The Euclidean distance between two points of the plane with Cartesian coordinates:

 $\mathsf{D} = [(\mathsf{x}_2 - \mathsf{x}_1)^2 + (\mathsf{y}_2 - \mathsf{y}_1)^2]^{(1/2)}$

Velocity = $D/(t_2-t_1)$

Sunbeam Angular Velocity v. Solar Time [ϕ =42°]

 $\gamma = 0^{\circ}$ D= 20 Feet D= 20 Feet HT 30 Feet γ = 25 Degrees γ = 0 Degrees Time Start 9.0 hr. Time End: 16.0 hr Sunbeam Angular Velocity v. Solar Time 3.00 1.60 А 1.40 2.50 А n n g g 1.20 u u D 2.00 Т D а 1.00 а е е r r g g 1.50 0.80 1 v v m m е е i i Т L 0.60 ¦ _ _ ; <u>"</u> 1.00 С С 0.40 i i t t 0.50 У У 0.20 0.00 0.00 9 10 10 11 11 12 9 10 10 11 12 14 14 15 15 16 16 11 12 13 13 Solar Time (hr) →Dec →Jan →Feb →March →Jan 4th

 $\gamma = 25^{\circ}$

30 Feet

HT

Sunbeam Linear Velocity v. Solar Time [ϕ =42°]

 $\gamma = 0^{\circ}$

 $\gamma = 25^{\circ}$

Reflection from Inclined Glass Surface

Traversed Slope(β') of Inclined Reflective Surface

Isometric View

Plan View

Sectioned Isometric View of Inclined Surface

Reflection from Inclined Glass Surface Theory

For Sunlight reflecting on the wall: JJ• $cos(\psi - \gamma_1) \ge D$

Tan(ψ - γ_1) = Z/D; Z=D•Tan(ψ - γ_1) J² = Z² + D²; J = (Z² + D²)^{0.5}

Inflection Angle $(A_I) = \alpha - \beta$ '

```
Reflected Angle (A_R) = A_I - \beta'

Tan(A_R) = Y/J; Y = J \cdot Tan(A_R)

Cos(\psi \cdot \gamma_1) = D/J

G^2 = Y^2 + J^2

Cos(A_R) = J/G
```

Ishingle = IR•Cos(A_R - μ) •Cos(ψ - γ_1 -{ γ_2 - γ_1 })

Incident Angle Factor = $[\cos(A_{R} - \mu) \cdot \cos(\psi - \gamma_{1} - \{\gamma_{2} - \gamma_{1}\})]$

Incident Angle = ACos[Incident Angle Factor]

Tan (β) = H/L; H= L• Tan (β)

Tan (β ')=H/[L / {cos(ψ - γ_1)}] = L •Tan (β) /[L / {cos(ψ - γ_1)}] = Tan (β) • cos(ψ - γ_1)

 $B' = ATan[Tan (\beta) \bullet cos(\psi - \gamma_1)]$

Solar Radiation Surface Energy Balance

 $Q_{Solar} = Q_{Reflected} + Q_{re-emitted} + Q_{Covection} + Q_{Surface Absorbed}$

 $\sum \mathbf{Q} = \mathbf{0}$

The solution to the above energy balance determines the temperature of the shingle surface at the equilibrium state.

Solar Radiation Spectrum

Unpiloted Ignition Temperature

- Western Red Cedar
- Paper Birch
- White Pine
- White Oak
- Long Leaf Pine

385°F 399°F 406°F 410°F 428°F

Table 4.14A: NFPA Fire Investigator Field Guide, 2nd Edition, 2013, pg. 103

Solar Gain Shingle Surface Temperature Increase

Isolar	Absorb	Tamb	ΔΤ	Shingle		
Btu/(hr-sf)		(°F)	(°F)	Temp (°F)		
2,058.4	95%	20.0	460	480		
			W	(ind (mile/hr):	Tin:	
				1.00	72	
		Emissivity				
		0.90		Wind (fps):	R-Value:	
				1.467	12	
ΔΤ	Ts	Radiation	Convect 1	Convection	Envelope	Σσ
0	20	0.0	0.0	0.0	-4.3	1959.8

Shingle Temperature (°F) v. Solar Time [ϕ =42°]

 $\gamma = 0^{\circ}$

 $\gamma = 25^{\circ}$

Actual Clock and Solar Time [Incident Time v. Solar Time]

Global Time Zones

GMT, Greenwich Mean Time, London (Zulu)

Time Zones in USA Earth Rotates 15° per hour

Solar Time

- APPARENT SOLAR TIME (AST)
- AST = LCT + TZ LONG/15 + EQT/60
- AST=12.0 at solar noon.
- LCT = Local Clock Time
- TZ:

EDT: +4,	EST: +5
CDT: +5,	CST: +6
MDT: +6,	MST: +7
PDT: +7,	PST: +8

- LONG = LOCAL LONGITUDE (+West, East)
- EQT = 9.87sin(2B) 7.53cos(B) sin(B) [minutes]
- $B = 2\pi (N-81)/365$

Glass Deflection

Properties of a Parabola

$$y = rac{1}{4f}(x-v_1)^2 + v_2 = rac{1}{4f}x^2 - rac{v_1}{2f}x + rac{v_1^2}{4f} + v_2.$$
 $P = 2f$

Glass Deflection

Window Deflection $\propto \Delta P$, 1/t³

[NX Software by Siemens]

Magnetic & True Orientation

Geographic Coordinates Use of Satellite Data to Determine True Readings

Directional Headings, Magnetic Declination Use Surveyors compass [Cell phone compass is inaccurate]

GPS Coordinates DoubleTree Hotel, 870 Williston Road South Burlington, Vermont

www.latlong.net

Lat: 44.472030° North Long: -73.187140° West

Convert to decimal coordinates

Building Orientation using Local Earth Radius & Satellite Data

Earth Radius: 3,956 miles

Local Earth Radius = Radius at Equator x [Cos (ϕ)]

www.findlatitudeandlongitude.com

Solar Reflections

Isometric View Base rotates on axis pin (not shown) Side clamps allow pitch adjustment

Front View

Rear View

Rear View with Cover Removed

The Window surface is not a single Paraboloid

The window surface shape can be divided into four quadrants.

Each quadrant reflects light separately and collectively. Reflection direction by quadrant:

- I): Right and Down; (Point **A** to Point **A**');
- II): Left and Down; (Point **B** to Point **B**');
- III): Left and Up; (Point **C** to Point **C**');
- **IV**): Right and Up; (Point **D** to Point **D**');

[Q1 on Photos] [Q2 on Photos] [Q3 on Photos] [Q4 on Photos]

Typical View of Reflected Light on Black Foam Board Screen with Support Frame

Distances shown are from window to black screen

10'

15'

20'

23'

24'

Focal Distance: 22' – 25'

25'

30'

39'

40'

The Window surface is not a single Paraboloid

The window surface shape can be divided into four quadrants.

Each quadrant reflects light separately and collectively. Reflection direction by quadrant:

- I): Right and Down; (Point **A** to Point **A**');
- II): Left and Down; (Point **B** to Point **B**');
- III): Left and Up; (Point **C** to Point **C**');
- **IV**): Right and Up; (Point **D** to Point **D**');

[Q1 on Photos] [Q2 on Photos] [Q3 on Photos] [Q4 on Photos]

Quadrants

Quadrant Evaluation

Quadrant Evaluation

18Q 1P 3

18Q 1 P 3

Instrumentation

Direct Normal Irradiation Readings [458 Btu/(hr-ft²)]

Thermocouple on Blackened disk @ 21' (Absorbed Black Body Temp: 414°F)

Concentrated Light Measuring Apparatus

[4-Layers of Wire Mesh Screen Shown Below]

[Patent Pending]

Shade Coefficient

Shade Coefficients per layer:		50.0%
<u>Layers</u>	<u>Shading</u>	Light <u>Transmission</u>
0	0.0%	100.0%
1	50.0%	50.0%
2	75.0%	25.0%
3	87.5%	12.5%
4	93.8%	6.3%
5	96.9%	3.1%
6	98.4%	1.6%

Interior View (Wire Mesh Removed)

Top & Bottom View (Wire Mesh Installed)

Reflected sunlight > 12x Direct Sunlight

Laser Survey Equipment

Total Station

Window Deflection Measurement

Solar Pathfinder Azimuth and Altitude Seasonal Constraints

SunEye 210

Determination of Shade Factor

Absorbed Blackbody Temperature: ~700°F

Conclusions

- Western Red cedar has an unpiloted ignition temperatures of only 385°F and can spontaneously ignite with concentrated reflected sunlight.
- Low E Glass can become parabolic-like and reflects concentrated sunlight with irradiation that will damage buildings & ignite combustible surfaces. Absorbed blackbody temperatures documented at >530°F; solar concentrations can be > 12x direct sunlight.
- 3) Concentrated reflected sunlight from Low E Glass can be <u>profoundly</u> dangerous to human eye safety.

Resolutions

- 1) Install Exterior screening or shading.
- 2) Use $\frac{1}{4}$ " thick glass to increase focal distance.
- 3) Install clear thermopane with interior tint.
- 4) Tint exterior pane; use Low E glass with reflective coating on #3 surface.

Learning Question

The focal distance of concentrated reflected light is affected by:

- a) Ambient temperature
- b) Intensity of solar insolation
- c) Wind velocity
- d) Atmospheric conditions
- e) Day number
- f) Thickness of glass
- g) Interior temperature
- h) Building orientation
- i) Pitch of window
- j) a, c, f, g, & h
- k) All of the above

Answer

k) All of the above

Questions?

(Photos captured at an engineering college in the Northeast)

